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A specific contact model was used in a code (discrete element method) to explain the mechanisms of energy
dissipation by collision and friction during the propagation of a granular mass on a slope. The numerical
model focused on both realistic block shapes and the relevance of the single-collision law that make physical
parameters easily assessable. Identification of the contact parameters was carried out by means of the digital
image analysis of two-body collisions. To this purpose, the dropping of single blocks on a flat surface was
filmed from two angles with high speed cameras. The digital images acquired during the rebound were
then analyzed to extract accurately the block kinematics (3D trajectory and velocities). The contact parame-
ters were optimized by minimizing an error function obtained by comparison between the numerical predic-
tions and the experimental results. Once the parameters were set, a simulation of the collective behavior of
the release of piled and randomly poured bricks under the same conditions as those released experimentally
as described in the literature, was carried out. The satisfactory match between the experiments and the nu-
merical predictions showed that (i) the proposed collision laws are sufficient to describe with accuracy the
energy dissipation that occurs during binary collision or during mass propagation, (ii) the optimization pro-
cedure enables correct identification of the parameters, and (iii) the initial layout of the blocks is of primary
importance in this process.

© 2012 Published by Elsevier B.V.
1. Introduction

Understanding and predicting rock avalanches are key elements in
risk management when developing mountainous areas. Due to the
complexity of the mechanisms involved, the morphology of the de-
posit or the propagation distance of a rock mass is difficult to estimate
accurately at the moment. On the one hand, the characteristics of the
geological base (the initial fracture network which determines the
shape and size of the blocks) or the topography of the avalanche
area can be determined by on site observations. On the other hand,
the phenomena of energy dissipation by friction, fragmentation, lam-
ination, attrition or seismic wave generation are much more complex
to estimate.

To introduce these dissipation mechanisms, the physical means by
which energy is dissipated in normal and tangential directions is usually
dealt with using a coefficient of restitution (CoR) and a coefficient of
friction, respectively. The overall damping rate is first defined as a
ratio between the velocitymagnitude of a particle just after and just be-
fore impact. Typical values can range from 0.2 to 0.3 for soft contacts
(e.g. impact on scree or loose soils Habib, 1976, 1977; Descoeudres,
1997; Pfeiffer and Bowen, 1989; Evans and Hungr, 1993), and from
0.7 to 0.8 for hard contacts. The CoR values vary considerably from one
hefeu).
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site to another, even for similar slopes. This is due to the huge amount
of parameters that are involved. In fact, besides the role played by the
characteristics of the blocks (weight, size, shape) and those of the slope
of the ground, an important part of the CoR is to be attributed to the kine-
matics of the impact (direction, speed and slope angle) (Wu, 1985; Chau
et al., 1999; Wu et al., 2003; Heidenreich, 2004).

Another definition of the CoR makes use of a distinction between
the normal, the tangential, and the rotational components of velocity
(Wu, 1985; Descoeudres, 1997; Okura et al., 2000a). The values of the
tangential CoR, typically ranging from 0.7 to 0.9, are greater than
those of the normal CoR, which vary between 0.1 and 0.6 depending
on the nature of the soil (Fornaro et al., 1990; Giani et al., 2004).
The threshold for the rolling resistance in relation to the CoR ranges
from 0.4 to 0.85 (Azzoni and De Freitas, 1995; Giani et al., 2004). In
the field of trajectography, a CoR greater than 1 can be used according
to some authors (see e.g. Evans and Hungr, 1993; Paronuzzi, 2009).
Although this seems to be unphysical, a value larger than 1 is actually
possible due to a different definition of the CoR.

Moreover, experimental studies of block impacts on slopes showed
that increasing the impact velocity leads to a greater loss of energy
and therefore a reduction in the CoR (Bozzolo et al., 1988; Urciuoli,
1988). This can be explained in some cases by the fact that for high
velocities, a block penetrates further into the substrate which then
hardens (Heidenreich, 2004). There exist many other possible explana-
tions since the field of contact mechanics is very extensive. Keys for the
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analysis of the phenomena involved in the impacts are provided in the
literature (see e.g. Walton and Braun, 1986; Johnson, 1987; Tsuji et al.,
1992b; Thornton et al., 2011).

Another parameter of analysis widely used is the CoR expressed in
terms of energy rate, i.e., a value that expresses the energy after im-
pact compared with that before impact (Bozzolo and Pamini, 1986;
Azzoni and De Freitas, 1995; Chau et al., 1999). This definition using
kinetic energy rates led to a ratio of squared velocities and thus equals
the square of the CoR based on velocity. In the case of a vertical re-
lease, this coefficient can be seen as the potential energy of the
block before and after impact and thus as the maximum height of
the block (after impact) divided by its initial height.

The numerical models commonly used to simulate the propagation
of granular materials, are continuum models based on fluid mechanics
(Savage and Hutter, 1989; Hungr, 1995; Mangeney-Castelnau et al.,
2003; Pirulli, 2009) or discrete element models (Cundall and Strack,
1979; Okura et al., 2000b; Taboada andEstrada, 2009). In an engineering
context, rock flows and in particular their run out distances must be
assessed by means of continuum models. What is meant here is more
specifically shallow-layer models for which the granular mass is treated
as a homogeneous pseudo-fluid (sometimes incompressible) using
Saint-Venant equations. The rheological models used characterize spe-
cific dissipation phenomena located at the base of the flow or within
the granular mass: frictional and Voellmy models (Voellmy, 1955;
Hungr, 1995; Pirulli and Mangeney, 2008). The most sophisticated
ones can simulate 3D flows (Denlinger and Iverson, 2004; Hungr and
Evans, 2004; McDougall and Hungr, 2004) by considering the material
carried along the path (Hungr and Evans, 2004; McDougall and Hungr,
2005; Pirulli, 2009; Sautier et al., 2010). The shallow-layer models are
in general accurate if the dissipation parameters are retro analyzed. Un-
fortunately, the parameters obtained are not always satisfying from a
physical point of view (if the suitable rheology is not explicitly taken
into account).

Discrete models have the advantage in modeling the deterministic
movements of a set of interacting particles. Many authors have used
this model to study the propagation of granular materials (Campbell
et al., 1995; Calvetti et al., 2000; Cleary and Prakash, 2004;
Linares-Guerrero et al., 2007; Staron, 2008; Valentino et al., 2008;
Favier et al., 2009; Taboada and Estrada, 2009). Taking into account
realistic shapes is possible using polyhedra, spheres or rigid sets of
spheres (clumps). The motion of each particle is governed by the fun-
damental principle of dynamics. Several types of dissipation models
are proposed in the literature (e.g. viscous contact models Campbell
et al., 1995; Cleary and Prakash, 2004) but few remain relevant to
the mechanisms observed in collision. Some models (Cundall, 1987)
assume that a rate of the driving force can be removed by means of
a damping coefficient. This artifact of calculation, which has no real
meaning, dissipates energy in an arbitrary manner. It affects both
the kinematics of free bodies and bodies that interact with each
other. While it hides much of the physical reality, this ratio has some-
times been used to study the propagation of granular materials
(Calvetti et al., 2000; Tommasi et al., 2008; Valentino et al., 2008).

Discrete element approaches are not based on strong assumptions
concerning the flow and “collective mechanisms” of dissipation. Unlike
in the case of continuum models, the velocity profiles, the dissipation
due to impacts and the friction in the bulk or bottom of the flow, the
specific dissipations due to the terrain, etc. are not presupposed.
According to (Salciarini et al., 2009), discrete models enable accurate
modeling of the propagation phenomenon without reaching a level of
discretization such that all existingmechanisms of interaction are trans-
lated. Discretemodels are thus valuable tools that help in the derivation
of the continuummodel of dissipation.

The model proposed here is based (i) on realistic block shapes and
(ii) on the definition of simple interaction laws that make physical
parameters easily assessable. These laws incorporate the mechanisms
of energy dissipation globally.
To validate this approach, which is extremely difficult to carry out
in the case of rock avalanches, simulations were performed that
replicate laboratory experiments conducted under idealized test con-
ditions (Manzella and Labiouse, 2009). Model parameters, optimized
by tests conducted on single brick release, were used to simulate the
collective behavior of a set of bricks on a slope.

Before applying the model to realistic cases, this study aimed pre-
cisely to assess if the error induced by a very simple representation of
each single impact has an influence on the overall behavior of the
rock flow or if this error disappears owing to the high number of im-
pacts. The numerical results presented in this paper tend to confirm
that this assumption is acceptable.

One advantage of the numerical model is that it gives access to
quantities which are difficult to assess experimentally at any point
of the granular mass: the velocity and rotation of bodies, the energy
dissipated by friction or collisions with the slope or within the mass
movement, the nature of flow and the geometry of the final deposit.
2. Numerical model

A classical discrete elementmethod to simulate rock avalancheswas
chosen. Although many references exist on the topic of smooth-DEM,
most of them focus on quasistatic loadings and/or spherical bodies. In
this section a numerical model dedicated to brick flow on rigid planes
implemented within the C++ toolkit DEMbox (see Computational
Granular Physics Gateway1) is presented. This section focuses on the
implementation of particle shapes and contact laws, the block motion
being detailed in Appendix A.
2.1. Particle shapes

In the rock avalanche problematic, the shape of the blocks is of pri-
mary importance and this must be taken into account explicitly in the
model. Different strategies are possible (e.g. polyhedra, clumps) but
spheropolyhedra were chosen. This choice has several advantages in-
cluding highly simplified contact detection (Alonso-Marroquin,
2008). Fig. 1 shows an example of a spheropolyhedron. The shape is
defined by a set of vertices interconnected by edges (lines) and
faces (plane polygons corresponding to triangles in Fig. 1). The vertex
positions of a body i are given by reference to the mass center Oi in
the body framework Ri defined by the main directions of the inertial
tensor. The body shape is then defined by sweeping a sphere of radius
ri along each point of its edges and faces. From a mathematical view-
point, these block shapes can be seen as the Minkowsky sum of a
polyhedron and a sphere (van den Bergen, 2003). In practice, the con-
tact position, the overlap and the local frame are determined by con-
sidering a few basic geometric computations based on the distances
between points, lines and planes. This geometric trick allows the con-
tact area between spheropolyhedra to be defined by a set of contact
points resulting from elementary intersection tests involving the
swept sphere radii: (1) vertex–vertex, (2) vertex–edge, (3) edge–
edge, and (4) vertex–face. One can better appreciate the benefit of
this method when considering for example the face–face intersection
test: The latter is simply replaced by a set of edge–edge and vertex–
face tests. The spheropolyhedra method has many other benefits
such as the ability to define concave and/or hollow shapes. Also the
contact normals are well-defined.

Since a spheropolyhedron is a rigid body, only the time evolution
of the mass center position and overall rotation is computed (see
Appendix A). The movement of the entities that compose the
spheropolyhedron (namely the slave bodies) are governed by the re-
lations of rigid motion.

http://www.cgp-gateway.org


Fig. 1. Definition of a spheropolyhedron illustrated in the case of a tetrahedron.

a

b

Fig. 2. Force laws: (a) Normal contact force as a function of the overlap, (b) tangent
friction force as a function of the sliding displacement.
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2.2. Contact force laws

The model proposed for a rock avalanche is based on body shapes
which are more realistic than spheres as seen previously. For the con-
tact force-laws, a simple formulation which nevertheless incorporated
the energy dissipation due to block impacts was needed.

Considering the huge amount of uncertainties related to a natural
event, it seemed totally impossible to predict the exact behavior of
each particle in the flow. Thus, it was decided to focus on the energy
loss linked to each impact, rather than to reproduce the exact physical
phenomena related to this impact.

The energy loss may result from very complex physical mecha-
nisms (heat production, wave propagation…) that are beyond un-
derstanding in the case of collective behavior. Moreover, the local
mechanisms do not need to be precisely identified, especially since
it will be necessary to identify the parameters involved. Minimalist
laws were opted for, where only the rate of energy loss together
with friction are required to dissipate the kinematic energy of the
blocks.

In other words, we have therefore chosen to consider a coarser scale
to take into account force transmission and dissipationmechanisms in a
granular assembly that flows and then stops. It is important to stress
here that this coarser scale is not unphysical but ignores some physical
mechanisms that are involved at smaller scales.

It will be seen in the sequel that the simple laws proposed here are
sufficient to satisfactorily describe themain rebound patterns. Obvious-
ly, themodel here is not able to reproducemore complex behaviors such
as rocking blocks (Bourgeot et al., 2006) or acousticwave propagation in
confined granular systems (Somfai et al., 2005).

Rock avalanches involve dynamic block movements. For this rea-
son, damping models which affects the block movements with an
artificial parachute cannot be used since it would lead to unphysical
behavior. Another solution is to account for a local viscous damping
at contact level. This solution was also rejected because, although it
introduces a viscosity parameter which can be connected to a well
defined dissipation rate in the case of single contact (Tsuji et al.,
1992a), it is ill-defined in the particular case of the multiple contacts
involved in the interactions of spheropolyhedra. More precisely, the
effective mass meff involved in the critical viscosity 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meffkn

p
is not

well defined for complex shapes and should depend on the positions
of the contact points and their number.

The simplest formulation for the normal force fnmakes use of a linear
elastic law with two different stiffnesses in the case of loading or
unloading (respectively kn

+ and kn
−) (Banton et al., 2009). When the

overlap hn increases (i.e. Δhn≥0), the normal force increment reads:

Δf n ¼ kþn Δhn: ð1Þ
Otherwise, if Δhnb0 and hn>0, the force fn is given by:

f n ¼ k−n hn: ð2Þ

Fig. 2(a) is a plot of this force-law which illustrates the role of in-
cremental loading.

It should be noted that the literature provides other contact laws
that also introduce energy dissipation by means of a difference of nor-
mal stiffness for loading and unloading (see e.g. Luding et al., 2003;
Oger et al., 1998). These laws have all the desired properties for
rock flow simulations, and provide accurate results for the impacts.
Unfortunately, this leads to numerical issues at the end of the flow
where persistent contacts tend to “oscillate”, and an additional
damping (or smaller time step) is required.

On the contrary, the contact law shown in Fig. 2(a) has the ability
to dissipate naturally the energy during these oscillations. It is thus
much more convenient for the numerical modeling of rock flows
under consideration here. It has the added advantage of using a single
parameter for normal energy dissipation without the need to postu-
late on all phenomena actually involved (e.g. viscosity, plasticity).
Since the focus is not on the actual value of the repulsive force, the
“force jump” used in the proposed contact law is not an issue. This
sounds unphysical from a contact mechanics point of view, but the
apparent lack of realism in the definition of contact force laws is irrel-
evant for the problem treated here.

Now consider a normal impact, that is – in this case of smooth
contact formulation – a contact loading up to a given overlap hn

m, im-
mediately followed by an unloading until fn=0. After the impact, one
part kn

−(hnm)2/2 has been restored, and since the maximum energy
that can be restored is kn

+(hnm)2/2, the dissipation rate in the normal
direction is:

e2n ¼ k−n =kþn : ð3Þ

In this definition, the square indicates that the dissipation rate is
expressed in terms of energy rate.

The friction forces f t t
→

in a local frame – the tangent direction t
→

being opposite to the sliding direction – is incrementally updated as
a function of the increment of relative displacement Δht in the sliding
direction (during a time step Δt). The relative rotation of the contact
normal is accounted for by the strategy developed in (Hart et al.,
1988). However for the sake of simplicity, the tangential law is
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presented here as in the 2D case (i.e. without taking into account the
relative rotations due to twisting):

f t ¼ min
Xt

t0

ktΔht ; μf n

( )
ð4Þ

where kt is the tangential elastic stiffness, μ is the coefficient of fric-
tion, and t0 is the time at contact onset. This common force-law is
plotted in Fig. 2(b).

3. Estimation of the model parameters

3.1. Single-brick experiments

The geometrical characteristics of the small scale experiment
(Manzella and Labiouse, 2009) to be reproduced are well known
(see Section 1), but the physical parameters of the interaction
model cannot be determined directly from the experimental results
reported in this paper. Additional experiments are therefore
performed using the same materials (small bricks and plastic sup-
ports called “forex”) as the ones used in (Manzella and Labiouse,
2009). Each of these experiments consists in observing the impact
of a single brick on a support after a fall, either from a specifically
designed launcher (allowing reproducible launches) or by launching
it manually in various positions. The fall, the impact, and the rebound
are filmed at 1000 images per second by two high-speed cameras po-
sitioned along orthogonal directions. Both brick–support and brick–
brick impacts are tested. In the first case the impact surface is identi-
cal to the plastic support used by (Manzella and Labiouse, 2009), and
in the second case it is composed of several bricks aligned and stuck
onto a support. The experimental device is described in Fig. 3.

The fall and the rebound of the launched bricks are filmed at an
average time interval of 200 ms (roughly 100 ms before impact and
100 ms after), i.e. 200 shots per camera. Fig. 4 provides an example
of some of these shots for each camera with a 20 ms time step. The
point of impact O of the brick is used as the origin of the spatial sys-
tem of axis (x, y, z), and the instant of impact is used as the origin
of the time axis. y is the vertical axis (pointing upwards), while x is
the axis of camera 1 (pointing from the camera to point O) and z is
the axis of camera 2 (pointing from O to the camera). It is therefore
assumed that the two cameras have perfectly orthogonal horizontal
axes, meeting in O. As shown in Fig. 4, four points (located at visible
corners of the bricks and called A1, A2, A3 and A4) are followed during
the image analysis. Points A1 and A2 are visible from both cameras,
while A3 and A4 only appear on cameras 2 and 1 respectively. For
each of the 200 shots of each camera, the positions of the points on
the images (expressed in pixels) are estimated, either manually or
using a digital image correlation technique. This operation provides
Fig. 3. Experimental device used for
the trajectories of A1, A2, and A4 (respectively A1, A2, and A3) projected
on camera 1 (respectively on camera 2), with a time step of 1 ms.

3.2. Synchronization and scaling

The synchronization of the images consists in determining the
exact time coordinate of each one. The cameras are not synchronous,
but separated by a constant unknown time interval, and a common
time of origin is chosen (moment of the impact). The position of the
center of mass of the brick is roughly estimated as the middle of seg-
ment A2A4 (respectively segment A2A3) on camera 1 (respectively on
camera 2). Provided the free-flight movement of the center of mass is
parabolic (i.e. the velocities involved are low enough to disregard air
friction), this movement is estimated for each camera from the points
measured. The intersection of the parabolas before and after impact
provides a satisfying estimate of the moment of impact, and therefore
of the time of origin (Fig. 5).

Estimating the positions of points A1 to A4 in the physical system
of axis (O, x, y, z) requires knowledge of the scale (expressed in
meters/pixel) on each camera. This scale is different from one launch
to another, depending on the position of the brick. It is assessed by
measuring (in pixels) the apparent length of an edge of the brick
the real length of which (in meters) is known. If this edge belongs
to a normal plan to the camera axis (i.e. if one may consider that
both its extremities are the same distance from the camera), the
scale is obtained directly by dividing the actual length by the appar-
ent length on the image. For a given impact, this scaling is performed
for each camera, and the positions of points A1 to A4 with respect to O
are evaluated. These coordinates are linked to the time coordinates
of each image (estimated by the synchronization method presented
earlier). This step provides measurements of x1(t), y1(t), z1(t), x2(t),
y2(t), z2(t), x3(t), y3(t), y4(t), and z4(t). The redundancy on the coor-
dinates y1(t) and y2(t) (provided by both cameras) makes manual
corrections of the image scales possible in the case of poor
correspondence.

3.3. Determination of the parameters of the contact law

The experimental kinematics of the bricks before and after im-
pact can be assessed from the trajectories of points A1 to A4 (see
Appendix B). The brick (31×15×8 mm) is represented using a
spheropolyhedron (the Minkowski sum of a parallelepiped and a
small sphere with a 1 mm radius) provided in Fig. 6, and composed
of 8 spheres (corners), 12 cylinders (edges), and 6 planes (faces).
The determination of the four parameters (en2, μ, kn, and kt/kn) of
the contact law is performed by retro analysis on a simulation of
the impact using a discrete element model which implements the
contact law described earlier. The experimental kinematics of the
brick being defined, the parameters of the fall (initial position,
identification of the parameters.



Fig. 4. Example of images acquired from the orthogonal cameras: (a) camera 1, (b) camera 2.

82 V. Richefeu et al. / Engineering Geology 149-150 (2012) 78–92
rotation, velocity, and angular velocity of the brick) are used as ini-
tial conditions in this simulation. For a given set of the four param-
eters of the contact law, the model provides a trajectory of the brick
Fig. 5. Example of shot synchronization (the impact time is chosen as the time of origin).
after the impact, which may be compared to the experimental tra-
jectory. The parameters of the contact law will be correct if the
correspondence between the experimental rebound and the one
Fig. 6. Shape of a brick modeled on a spheropolyhedron.
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simulated is optimal. This correspondence is obtained by minimiz-
ing the error function E2 :

E2 ¼
X8
i¼1

Xτ
t¼0

di tð Þ: ð5Þ

In this expression, i is an index defining one of the 8 corners of the
brick, and di(t) represents at a given time t the distance between the
positions of this point obtained from both the identified motion and
from the simulated one. The error function is therefore a sum over
time of the distances between the positions of the 8 corners obtained
experimentally and numerically.

The choice of 8 points induces some redundancy but does not com-
plicate the optimization process since it only modifies the computation
of the error function. When dealing with retro analysis, redundancies
are always welcome because they lead to more discriminating error
functions and therefore to better estimates of the unknown parameters.
The sum in Eq. (5) is computed from the moment of impact and during
a given time τwhich should be neither too short (the experimental and
numerical trajectories would not have time to diverge and the error
would have no meaning) nor too long (the error would only represent
the correspondence between the trajectories of the center of mass, the
influence of rotation becoming imperceptible). Taking this into consid-
eration a reference time τref can be defined as the ratio between the
length of the brick and its characteristic velocity. For the tests here,
τref is about 0.01 s, and the normalized time is thus τ/τref=0.1/0.01=
10. In other words, the time considered in the error function E2 corre-
sponds to a travel length 10 times longer than the length of the brick.

It should be noted that the minimization process only relies on
kinematical measurements before and after impact, and therefore to-
tally ignores any measurements of force. This is consistent with the
fact that the chosen contact law is only meant to reproduce the kine-
matics of the impacting objects, considering the contact as a “physical
black-box” (even though this contact has a duration in the numerical
process). To that extent, it may be compared with the resolution of
contacts performed in the contact dynamics approach (see e.g.
Moreau, 1994; Jean, 1999; Radjai and Richefeu, 2009).

For a given impact, the minimization of E2 leads to an optimum on
the parameters of the contact law, which therefore provides the best
numerical representation of the experimental impact. However, it
was observed that, from one impact to another, the sets of optimal
parameters were not strictly similar. Several reasons for this may be
considered:

• The modeling of a contact involving numerous complex physical
phenomena with only four parameters makes it impossible to
account for certain influences, such as those of impact velocity or
angle of attack.

• It is not possible to simulate accurately the exact geometry of the
brick, especially the abrasion of the corners which leads to a contact
surface that differs from the one introduced in the model.

• The methodology of identification of the experimental trajectory of
the brick suffers from uncertainties, such as those stemming from
the assumption of a constant scale for a given impact despite the
relative motion between the brick and the camera.

Despite these observations, it is interesting to limit the number of
contact parameters, and the proposed model still appears relevant.
Moreover, the objective of this model is to simulate the collective
motion of a rock avalanche, not to simulate accurately the motion
of a single particle for which perfect repeatability cannot be attained.
Indeed, a very small change in the initial conditions (position, rota-
tion, velocities, geometry, sharpness of the corners) has a dramatic
effect on the brick trajectory after the first impact. Actually, such
repeatability is not mandatory when dealing with natural phenome-
na such as rock flows where the conditions of impacts (contact
geometries, material properties, etc.) are extremely diverse even
for a single event. It is very difficult to model accurately all these con-
ditions with only a few parameters. A better approach would be to
find the parameters that lead to the best representation of the overall
behavior of the flow, ignoring the approximations related to the rep-
resentation of single impacts. It was therefore decided to diversify
the impact conditions during calibration instead of repeating the
same conditions several times. Given this choice, the optimal param-
eters will not be perfect for each single impact, but will be as good as
possible for the wide variety of impact conditions. This choice can-
cels out the need to evaluate the respective parts of error related to
experimental measurements or changes in the conditions of impact.
However, in the perspective of applying this method to natural
events, the present authors believe that the uncertainty linked to
measurement is significantly lower than that linked to the impact
conditions.

It may therefore be estimated that global parameters obtained
from a number of single impacts should provide a representative be-
havior of the particles, despite a small inaccuracy. The global error
function for a given type of contact is the sum of the error functions
computed for the different experiments performed for this contact
type (four launches for a brick–support contact, two launches for a
brick–brick contact), and is given by:

E2G ¼ ∑E2: ð6Þ

The minimization of this global error leads to a global optimal set
of parameters for the representation of a given type of impact. A rep-
resentation of this error is provided in Fig. 7 for the brick–support
contact, with respect to the four parameters en

2, μ, kn, and kt/kn. The
error is plotted using curves of equal values of E2G in two planes:
plane (en2,μ) with kn=105 and kt/kn=0.42, and plane (kn,kt/kn)
with en

2=0.53 and μ=0.46.
Concerning the two parameters related to energy dissipation (en2, μ),

Fig. 7a shows that a clear optimum appears, under the shape of a “well”
of error around the point of coordinates en2=0.53 and μ=0.46. These
two values are therefore probably able to represent properly the aver-
age behavior of a brick–support contact. For the two stiffness parame-
ters, the level curves of Fig. 7b show a less accentuated optimum.
Note that the gray-level gradient of Fig. 7b is highly dilated when com-
pared with Fig. 7b to ease the location of the minimum value; the sur-
face is actually almost flat. The parameter of normal stiffness kn does
not seem excessively critical between 104 and 106, whereas the param-
eter of tangential stiffness kt/kn has a clearer optimumaround 0.42. Sim-
ilar response surfaces are plotted for the brick–brick contact. The
optimum parameters obtained for the two contact types are provided
in Table 1. It clearly appears that a contact between two bricks is
much more dissipative than a contact between a brick and the plastic
support.

It should be noted that the performed calibration is probably
shape-dependent and also depends on the locus of impact. For our
brick shape, the obtained parameters for each launch are quite similar
and the shape-dependency is thus limited. This is surely not the case
for shapes with a high aspect ratio.

Fig. 8 presents a summary of the results obtained for an example
of brick–support impact (corresponding to Fig. 4). For each camera
and for a time step of 20 ms, it provides successively the positions
of the brick captured by the camera (left), the trajectories estimated
by minimization of the error function E1 (middle), and the rebound
provided by the numerical simulation (right) for the set of parame-
ters provided by minimization of E2G and given in Table 1. It clearly
appears that the globally optimal parameters (determined after sev-
eral impacts) are able to simulate, with satisfactory accuracy, a single
impact.



Fig. 7. Contour lines of the global error function E2G (brick/support contact): (a) {kn; kt/kn} parameter-space, (b) {en2; μ} parameter-space.
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4. Validation of the model

4.1. Description of the experiment chosen for validation

In order to assess the ability of the proposedmodel to predict the be-
havior of a rock avalanche, a validation is undertaken by attempting to
reproduce some experimental results from (Manzella and Labiouse,
2009). A series of launches of a large number of small bricks were car-
ried out on a device composed of two rectangular boards (3×4 m) of
forex (a sort of plastic), linked by a hinge. The first board was fixed
Table 1
Optimal parameters obtained by minimizing E2G.

en
2 μ kn kt/kn

Brick/support 0.53 0.46 105 0.42
Brick/brick 0.13 0.86 105 0.27
and horizontal, while the second one was inclined at a user-defined
angle. A rectangular box (height 0.2 m, width 0.4 m, depth 0.6 m)
was filled with a given amount of material, and positioned at a deter-
mined height on the inclined plane. A trap was open to release the
tested material. This material traveled along the slope until it landed
on the horizontal plane. A high-speed camera was used during the ex-
perience in order to evaluate the position and velocity of the
mass-front. The morphology and the dimensions of the final deposit
of material were determined by a fringe projection technique. Several
parameters were studied: the nature of the material released (gravel,
small bricks), the slope angle, the fall height, the volume of material,
and the type of support. The validation proposed in the present article
focuses on two experiments carried out on small bricks, of average di-
mensions 31×15×8 mm, with a density evaluated at 1700 kg.m−3.
For both experiments, the slope angle was fixed at 45°, and the launch
height was equal to 1 m (Fig. 9). During the first test, a volume of 40 l
of bricks was poured randomly into the launching box. This represents



Fig. 8. Positions of the brick each 20 ms: (left) camera shots; (middle) identification by minimization of E1; and (right) numerical model with an optimal set of parameters obtained
by minimization of E2G. (a) Camera 1, (b) camera 2.
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an apparent density of 1000 kg.m−3, while during the second test they
were piled orderly to reach also a volume of 40 l (apparent density of
1600 kg.m−3). It should be noted that the materials used in Section 4
Fig. 9. Proportions of the reference experimental d
for the determination of the contact parameters (small bricks and
forex support) were identical to the ones used during the experiments
by (Manzella and Labiouse, 2009) (Fig. 10).
evice and definition of measured parameters.



Fig. 10. Materials used by (Manzella and Labiouse, 2009): (a) bricks randomly poured
and (b) bricks piled orderly.
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4.2. Simulation of randomly poured bricks

In a first attempt to validate the proposed model, the experiment
involving randomly poured bricks is reproduced numerically. The ini-
tial state of the experiment is reproduced by launching simultaneous-
ly 6300 virtual bricks (Fig. 6) in a fictive box, each brick being
oriented in a random direction. In order to reach a volume of material
of 40 l (corresponding to an apparent density of 1000 kg.m−3),
several trials are needed with various values of the contact parame-
ters. When the target density is achieved, the contact parameters
are restored to their optimal values (Table 1), and the fictive box is
installed in conformity with the geometry of the experimental device.
The fall of the bricks starts when the lower face of the box is deleted.

Fig. 11a and b shows several stages of the avalanche, respectively a
vertical view and a perspective view. In Fig. 12, a comparison between
the experimental and numerical results is provided in terms of the con-
tour of the deposit (in plane and in elevation), and of the mass-front
velocity on the horizontal plane. A very satisfying correspondence ap-
pears between the numerical and experimental deposits projected in
a horizontal plane, but this correspondence is not as accurate for the
projection in a vertical plane, the numerical deposit being much higher
than the experimental one. The curve of themass-front velocitywith re-
spect to the position of themass-front shows a correct qualitative corre-
spondence. The observed quantitative differences may be linked to a
possible inaccuracy of the model, but are more probably related to a
lack of precision in the definition of the motion of the mass-front. In-
deed, the position of the mass-front has no rigorous and objective defi-
nition. In the experimental tests it was defined from an automatic
algorithm on each shot of the camera (using a criterion of contrast be-
tween the released material and the plastic support), while in the nu-
merical simulations it is based on a criterion of spatial density of the
bricks (not detailed here). This difference of definition might be suffi-
cient to explain the observed differences. Moreover, the authors of the
experiments point out a possible inaccuracy in their results due to diffi-
culties related to low-contrast images (Manzella and Labiouse, 2009).
Taking this into consideration, the numerical results seem relevant.
Qualitatively, Fig. 12c provides some interesting observations about
the behavior of the avalanche. Onemayfirst observe a substantial decel-
eration on impact of the mass-front on the horizontal plane (between
0 mand 0.2 m), followed by a zone inwhich the velocity decreases a lit-
tle, corresponding to the accumulation of thematerial on the plane (be-
tween 0.2 m and 0.6 m), and finally a further substantial deceleration
until the end of the motion (between 0.6 m and 0.8 m).

Fig. 13 shows a comparison between quantitative results obtained
experimentally and numerically. The dimensions of the deposit
(length L, runout R, width W, and height H) are very satisfactorily
reproduced by the model, except for that of the height which is
overestimated by 60%. The position XCM of the center of the mass of
the deposit is correctly assessed, and both angles of propagation
(travel angle related to the center of mass φCM and fahrböschung
φapp related to the extreme points of the deposit) are very accurately
simulated. These results emphasize the ability of the model to simu-
late all the energy dissipation phenomena inside the mass of material,
despite the fact that the parameters of contact law were derived from
quite simple tests using a single brick motion.

4.3. Simulation of orderly piled bricks

A second experiment from (Manzella and Labiouse, 2009) is sim-
ulated. This experiment deals with 40 l of the same bricks which are
positioned and piled along regular alignments. This stack is
reproduced numerically and leads to a much larger number of bricks
than in the first simulation (roughly 10,000 instead of 6300), due to
the greater density of the initial batch of blocks for an apparently
same volume. The numerical and experimental results are provided
in Fig. 14, in terms of deposit morphology and of mass-front velocity.
The horizontal and vertical contours of the numerical deposit show a
poorer correspondence than in the case of randomly positioned
bricks. Indeed, it appears that the numerical model leads to a higher,
longer, and narrower deposit than the one observed experimentally,
even if the global position is correct. The numerical curve of the
mass-front velocity shows a similar behavior as that in the first simu-
lation, but with greater velocities. The final deceleration and stopping
of the mass are correctly reproduced, but the experimental curve
does not show any brutal deceleration during the first impact of the
avalanche on the horizontal plane as predicted by the numerical
curve.

The differences observed of the morphology of the deposit may be
explained by poor reproduction of the initial state of the batch of par-
ticles. Indeed, the numerical alignments and shapes of the bricks are
absolutely perfect (in terms of regularity and parallelism), which is
not the case of the experimental bricks (Fig. 10). This experimental
inaccuracy is certainly understandable owing to the small differences
in shapes and sizes of the bricks and the difficulty in achieving a per-
fect alignment of such a large number of elements. In such conditions,
perfect accuracy in the numerical reproduction of the experimental
initial state appears unattainable. However, one may presume that in-
troducing a small level of perturbation in the initial alignment of the
particles would improve the numerical results. To validate this as-
sumption, the shape of the numerical bricks is slightly modified by
the introduction of a bevel of 2° on three faces. The modified bricks
therefore are not longer parallelepipeds, although their global dimen-
sions are very similar to those of the original bricks. The modified
bricks are stacked in the virtual box following the same alignment
but with randomly varying orientations, so that the bevel introduced
will not trigger any asymmetry in the flow. The numerical results are
compared with the experimental ones in Fig. 15.

It appears that the modification of the shape of the bricks improves
the correspondence between the numerical and experimental results.



Fig. 12. Comparison of experimental and numerical results for the release of initially disordered bricks. (a) Horizontal and (b) longitudinal cross-sections of the deposits;
(c) mass-front velocities.

Fig. 11. Numerical results for an avalanche of randomly poured bricks. (a) Top view and (b) perspective view.
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Fig. 13. Quantitative comparison between experimental and numerical results for initially disordered bricks: length L, runout R, width W, position of the center of the mass XCM,
travel angle φCM, fahrböschung φapp and height H.
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The comparison between Figs. 14 and 15 shows that the bevel intro-
duced reduces the length of the deposit and increases its width,
allowing a better representation of the experimental deposit. Thismod-
ification also leads to a small reduction of the mass-front velocity,
although the global shape of the curve remains unchanged. The differ-
ences observed between the experimental and numerical velocities
may be related to the same reasons as those in the case of randomly po-
sitioned bricks.

Fig. 16 provides a quantitative comparison between the deposits
obtained experimentally and numerically (with perfect and modified
bricks). It is clear that the introduction of the 2° bevel substantially
improves the estimation of the dimensions of the deposit (reduction
in the length, in the runout and in the height, increase in the width)
and in the position XCM of the center of mass. The travel angle and
fahrböchung, which are predicted quite well in the case of perfectly
shaped bricks, are not modified in any way.

4.4. Discussion

These results enlighten the crucial impact of the initial state of the
mass of material as it travels along a slope, and therefore the shape
and dimensions of the final deposit, for an apparently similar shape
Fig. 14. Comparison of experimental and numerical results for a release of perfectly shaped b
the deposits; (c) mass-front velocities.
and volume of the initial mass (Fig. 17). The results of the simulation
with randomly positioned bricks show that the proposed model is
very capable of predicting the behavior of the flow of a group of par-
ticles, if the initial state of this group has no specific order or symme-
try. It is likely that this ability is also satisfactory in the case of a
specific initial state (i.e. with perfect alignment), but this assertion
is more difficult to validate since such an initial state is almost impos-
sible to reproduce experimentally. However, it was shown that the
artificial introduction of a geometrical perturbation of the particle
shape and alignment is able to reproduce satisfactorily a specific but
not perfect initial state. Nevertheless such a perturbation is quite dif-
ficult to define a priori.

5. Conclusion

A discrete element numerical model based on a dissipative contact
model and realistic block shapes has been applied to the propagation
of granular materials down a slope. Simulations of releases with piled
and randomly packed bricks were performed and compared with re-
sults from the literature. The parameters of the contact model, which
all have physical meaning, were assessed on the basis of experiments
of single brick bounce on a flat surface (or on another fixed brick) for
ricks which were initially ordered. (a) Horizontal and (b) longitudinal cross-sections of



Fig. 15. Comparison of experimental and numerical results for a release of modified bricks initially ordered. (a) Horizontal and (b) longitudinal cross-sections of the deposits;
(c) mass-front velocities.

89V. Richefeu et al. / Engineering Geology 149-150 (2012) 78–92
several angles of incidence and different initial drop heights. An opti-
mization procedure was used to determine the most appropriate pa-
rameter set able to satisfactorily reproduce all experimental tests that
were conducted. The model's ability to report the behavior of particle
flow was demonstrated by comparing the numerical predictions with
the experimental releases (10000 piled bricks and 6300 randomly
packed bricks). The match between numerical and experimental re-
sults for the release of randomly packed bricks proved to be very sat-
isfactory both for the flow kinematics, the front velocity, the runout or
the deposit morphology. The differences observed between simula-
tions and experimental results in the case of piled bricks are for
their part attributed to a poorly controlled arrangement of the stack
in the initial test case. If a slight disorder in the organization of bricks
(due to the introduction of small imperfections in the brick shapes)
leads to a better consistency of results, a further comparison in this
case does not seem necessary given the difficulty to be faced in per-
fectly replicating the original experimental packing.

For the tested materials (bricks and slightly deformable plane
support) the contact laws and procedures for optimizing the parame-
ters proposed are greatly suited to account for the rebound kinemat-
ics and mechanisms of energy dissipation whether the particles are
Fig. 16. Quantitative comparison between experimental and numerical results for perfect a
center XCM, travel angle φCM, fahrböschung φapp and height H.
isolated or in assembly (dissipation by friction or collision). For appli-
cations to real events such as rock avalanches, the contact laws and
the optimization procedure for parameter assessment must be tested
and possibly improved to incorporate more complex interaction
mechanisms such as excessive penetration of blocks on the sloping
ground, the movement and tearing of the bedrock or rock fractures.
The advantage of the discrete model is that it enables, provided that
the physical mechanisms are controlled, the integration of specific
dissipative laws that are features of flow kinematics and adapted to
each type of event. Analysis and backward analysis of events that
took place will certainly improve the model and provide predictive
results on future events.
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Fig. 17. Deposit morphology obtained by the numerical model. The initial packing had an apparent volume of 40 l and was (a) randomly poured or (b) perfectly piled.
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Appendix A. Block motions

The algorithm for the classical discrete element method involves
two stages for each rigid body i: (1) the computation of the resultant
forces F

→
i and moment M

→
i from volume and contact forces (see

Section 2.2); and (2) the time integration of Newton's second law
(for translations) and Euler's equations (for rotations). This move-
ment integration is performed by means of the velocity-Verlet
scheme (Allen and Tildesley, 1989) which is a satisfactory compro-
mise between the accuracy of the block velocities (for both transla-
tions and rotations) and memory saving.

Each body i is kinematically defined in the global frameworkR by
its mass-center position r

→
i, its mass-center velocity v

→
i, its angular

position given by a unit quaternion q̂i, and its angular velocity ω
→

i.
Unit quaternions provide a convenient mathematical notation for
representing orientations and rotations of objects in three dimen-
sions. Compared to Euler angles they are simpler to compose and
avoid the problem of gimbal lock. Compared to rotation matrices
they are more numerically stable and use less memory. Somehow,
unit quaternions can be interpreted as rotation matrices but they
only hold one scalar value and one vector: q̂i ¼ si; v

→
i

h i
: There exists

a largely developed mathematical background concerning quater-
nions, but all this knowledge is not absolutely necessary when deal-
ing with rotations.

For translation motion, the velocity-Verlet algorithm can be sum-
marized as follows for each time step Δt :

r
→

i t þ Δtð Þ ¼ r
→

i tð Þ þ v
→

i tð ÞΔt þ 1
2
a
→

i tð ÞΔt2

v
→

i t þ Δtð Þ ¼ v
→

i tð Þ þ 1
2

a
→

i tð Þ þ a
→

i t þ Δtð Þ
h i

Δt;

8><
>: ð7Þ

with

a
→

i ¼
Fi
mi

þ g
→
; ð8Þ

where mi is the mass of the body i, and g
→

is the gravity acceleration.
For rotation motion, the velocity-Verlet algorithm is also used to

determine the angular positions and velocities of the bodies. It for-
mally reads:

q̂i t þ Δtð Þ ¼ q̂i tð Þ þ _̂q i tð ÞΔt þ 1
2
€̂q i tð ÞΔt2

ω
→

i t þ Δtð Þ ¼ ω
→

i tð Þ þ 1
2

_
ω
→

i tð Þ þ _
ω
→

i t þ Δtð Þ
� �

Δt
:

8>><
>>: ð9Þ
In this scheme, the first and second time derivative of the quater-
nion can be expressed in terms of the angular velocity vector as:

_̂q i tð Þ ¼ 1
2

^
ω
→

i tð Þ � q̂i tð Þ; ð10Þ

and

€̂q i tð Þ ¼ 1
2

_̂
ω
→

i tð Þ � q̂i tð Þ þ 1
4

^
ω
→

i tð Þ � ^
ω
→

i tð Þ � q̂i tð Þ; ð11Þ

where
^
x
→

denotes for the quaternion 0; x
→

h i
, and operator ∗ is the

Hamilton product defined by

s1; v
→

1

h i
� s2; v

→
2

h i
¼ s1s2−v

→
1 v
→

2; s1 v
→

2 þ s2 v
→

1 þ v
→

1 � v
→

2

h i
: ð12Þ

In Eq. (9), the derivative of angular velocities of each of the bodies
i is obtained from Euler's equations as follows (subscripts i are re-
moved to facilitate reading):

_ω⋆
1 ¼ M⋆

1− I⋆3−I⋆2
� �

ω⋆
2ω

⋆
3

� �
=I⋆1

_ω⋆
2 ¼ M⋆

2− I⋆1−I⋆3
� �

ω⋆
3ω

⋆
1

� �
=I⋆2

_ω⋆
3 ¼ M⋆

3− I⋆2−I⋆1
� �

ω⋆
1ω

⋆
2

� �
=I⋆3

;

8><
>: ð13Þ

where components 1, 2 and 3 are expressed in the body frame
(superscripts ⋆ are added here for memory).

It is important to notice that, in Eqs. (8) and (13), F
→

i and M
→

i are
obtained from the contact force laws which depend on body positions
(r
→
and q̂) at time t, and their mean velocities between times t−Δt and t.

Appendix B. Identification of experimental trajectories

From the trajectories of points A1 to A4 obtained after synchroniza-
tion and scaling, it is possible to define the movement of the whole
brick after a retro-analysis study. First, one has to put into equation
the position of the four points using a reduced number of parameters
related to the brick motion. These parameters are then adjusted by
minimizing an error function in order to obtain the best correspon-
dence between measured and calculated positions of the four points.
Impacts are obviously not instantaneous, but the time lag between
two images is so much greater that their duration can be ignored.

At any time t, the coordinates r
→c

i tð Þ ¼ xci tð Þ; yci tð Þ; zci tð Þ� �T of a
point Ai in the global axis system are obtained from the trajectory



Fig. 18. Coordinates of measured points A1 to A4 as a function of time. The optimum trajectory is obtained by minimization of the function E1.
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of the center of mass G of the brick and from its rotation around
G:

r
→c

i tð Þ ¼ r
→

G tð Þ þ
axx tð Þ axy tð Þ axz tð Þ
ayx tð Þ ayy tð Þ ayz tð Þ
azx tð Þ azy tð Þ azz tð Þ

2
4

3
5⋅ r→0

i : ð14Þ

In this expression, the coordinates of G at the moment t are given by:

r
→

G tð Þ ¼ r
→ 0

G
þ v

→−
G

t− g
→

t2=2 if t≤0 r
→0

G þ v
→þ

G t− g
→

t2=2 if t > 0:
n

ð15Þ
The matrix of rotation at a time t is given by:

axx tð Þ ¼ cosθy tð Þ cosθz tð Þ
axy tð Þ ¼ − cosθy tð Þ sinθz tð Þ
axz tð Þ ¼ sinθy tð Þ
ayx tð Þ ¼ cosθx tð Þ sinθz tð Þ þ cosθz tð Þ sinθx tð Þ sinθy tð Þ
ayy tð Þ ¼ cosθx tð Þ cosθz tð Þ− sinθx tð Þ sinθy tð Þ sinθz tð Þ
ayz tð Þ ¼ − cosθy tð Þ sinθx tð Þ
azx tð Þ ¼ sinθx tð Þ sinθz tð Þ− cosθx tð Þ cosθz tð Þ sinθy tð Þ
azy tð Þ ¼ cosθz tð Þ sinθx tð Þ þ cosθx tð Þ sinθy tð Þ sinθz tð Þ
azz tð Þ ¼ cosθx tð Þ cosθy tð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð16Þ

where

θ
→

tð Þ ¼ θ
→0

þω
→−

t if t≤0

θ
→0

þω
→þ

t if t > 0
;

(
ð17Þ

with

• r
→0

i ¼ x0i ; y0i ; z0i
� �TZ, the coordinates of Ai in the local frame of the

brick.
• g

→¼ 0; 9:81; 0ð ÞTZ, the gravity acceleration.

The motion of the brick before and after impact is therefore totally
defined by the following 18 parameters:

• r
→0

G ¼ x0G; y0G; z0G
� �TZ, the coordinates of G at t=0.

• θ
→0

¼ θ0x ; θ0y ; θ0z
	 
T

Z, the rotation of the brick around G at t=0.
• v
→−

G ¼ v−Gx; v−Gy; v−Gz
	 
T

Z, the velocity vector at t=0− (just before

impact).

• ω
→− ¼ ω−

x ; ω−
y ; ω−

z

	 
T
Z, the angular velocity vector at t=0−.

• v
→þ

G ¼ vþGx; vþGy; vþGz
	 
T

Z, the velocity vector at t=0+ (just after

impact).

• ω
→þ ¼ ωþ

x ; ωþ
y ; ωþ

z

	 
T
Z, the angular velocity vector at t=0+.

These parameters define the position and rotation of the brick at the
moment of impact, and the velocity and angular velocity vectors im-
mediately before and after impact. A given set of these parameters
will provide a good description of the brick motion if the correspon-
dence between the measured coordinates (e.g. x1(t)) and the analyt-
ical coordinates (e.g. x1

c(t)) is optimal. This correspondence is
obtained by minimizing the following error function E1:

E1 ¼ ∑S1
∑p¼1;2;4 yp tð Þ−ycp tð Þ

h i2 þ zp tð Þ−zcp tð Þ
h i2� �

þ∑S1
∑p¼1;2;4 xp tð Þ−xcp tð Þ

h i2 þ yp tð Þ−ycp tð Þ
h i2� � ð18Þ

where S1 and S2 refer to sets of images acquired by camera 1 and 2,
respectively, over time. This minimization is performed with respect
to the 18 parameters describing themotion, andwith respect to coor-
dinates (x10, y10, z10, x20, y20, z20, x30, y30, y40 and z4

0) of the points A1 to A4 in
the local system of axes of the brick. Indeed, these coordinates are
not precisely known because of possible uncertainties concerning
the size of the brick, abrasion of the corners of the brick, and imprecise
estimation of the points coordinates on images. The minimization is
therefore performed on 28 variables. Including these coordinates in
the minimization improves the correspondence between measured
and analytical trajectories of the four points, and provides a better es-
timate of the brick motion. A comparison between the measured co-
ordinates of the points and the coordinates computed with the
optimal set of parameters (i.e. leading to a minimization of E1) is pro-
posed in Fig. 18. The correspondence is very satisfying for the 12 coor-
dinates, and confirms that the minimization converged.
This optimization procedure is used to determine with precision the
brick motion for a total of six impacts (four brick–support impacts
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and two brick–brick impacts), with different launch height, inclina-
tions, and initial velocities, in order to generalize the results.
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