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a b s t r a c t

In this work, we present a numerical framework for the modelling of friction and wear of rough surfaces.
This framework is based on the Discrete Element Method (DEM), and aims to mimic the inner
microstructure of polycrystalline materials. For this purpose, a sample generation program has been
developed, into which each grain of this microstructure is represented by a rigid 3D Voronoi cell. A
typical sample generated by this program represents a body composed of a degradable and a non-
degradable parts, both of which presenting several well-controlled features: size and geometry of the
grains (controlled by the positions of the seeding points of the Voronoi tessellation), roughness of
the surface and of the underlying substrate (controlled by the means of the frequency content and
possible anisotropy of this roughness), and periodic or planar lateral boundaries. These features enable
the modelling of a large number of contact situations with a great flexibility. After presenting in details
the algorithmic routines developed for this sample generation, we detail some examples of generated
samples and we provide insight of their implementation in the implicit discrete code LMGC90. An
Illustrative simulation is then performed to demonstrate the ability of this framework to model diverse
situations of friction and wear, by representing accurately the creation and the rheology of third bodies.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The understanding and prediction of friction and wear occupy a
central position in tribology, and these phenomena may be efficiently
described in the context of the tribological triplet which was first
proposed by Godet and Berthier [1,2]. In this conceptual framework, a
frictional contact is investigated at three different scales which form
the tribological triplet: the scale of the mechanism surrounding the
contact, the scale of the two bodies in contact (called first-bodies), and
the scale of the so-called third-body, i.e. the interfacial material coming
from the degradation of first-bodies or entering into the contact from
the outside. This last scale is particularly complicated to study, because
it is the place for many mechanical transformations (damage, fracture,
fatigue, plasticity, phase change, etc.), many physical phenomena (heat
production, chemical reactions, electrostatic interactions, etc.) and
because its confinement prevents it from a convenient experimental
measurement. Observations of third-body in various contact condi-
tions [3,4] reveal that it may be more or less heterogeneous and
continuous, that its thickness may have various orders of magnitudes
(from a few nanometres to several micrometres), that a large part of its

content comes from the degradation of first-bodies, and that it flows
into the contact with an unknown rheology. Continuous modelling
[5,6] of such a medium is very challenging, because it involves very
large deformations, frequent discontinuities, and complex constitutive
laws. Alternatively, successful attempts have been made by the
numerical tribology community to apply the concepts of Discrete
Element Modelling (DEM) to this specific problem. These techniques
are now rather common in the field of granular materials [7–9], and
offer the kinematic flexibility that lacks in continuum approaches
since they consist in representing the motion of each body composing
a granular assembly, and thus do not rely on any continuity assump-
tion. Recent works on granular matter have consisted in introducing
more and more complex [10–14] and realistic [15–18] granular shapes
in such simulations, inspired by the progress of the experimental
assessment of granular morphologies [19,20]. In the field of tribology,
however, realistic shapes have not been very much investigated since
the DEM is more used as a convenient tool to represent the flow of
matter in a phenomenological way [21–23] than as a close reproduc-
tion of the micromechanical behaviour of the third-bodies. Rather,
efforts have been put in using more sophisticated or realistic contact
laws in order for the numerical phenomenology to approach the
experimental one [24–26]. In the last decade, DEM has been often
used in tribology to model the first body degradation and the third-
body flow [27–29], and current trends consist in coupling discrete
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methods with finite elements to perform multi-scale modelling [30],
or in enriching the models with other physical ingredients such as
heat or electricity [31–33].

Interestingly, the DEM has also been used in the field of fracture
mechanics, to model the initiation and propagation of cracks in
materials [34–37]. In particular, the work of Sadeghi and co-workers
on rolling contact fatigue [38–40] is of great interest, because it deals
with microstructural cracks which develop at the scale of interest for
tribologists. In these papers, the microstructure of a polycrystalline
material is represented at small scale by a Voronoi tessellation, and
each cell of this tessellation is then considered as an independent
rigid body subjected to the laws of motions. This approach is then
used in a DEM framework to study the microstructural damage of
the material. In the present paper, we wish to use concepts devel-
oped in this set of papers to propose a DEM framework for the
modelling of the superficial degradation of first-bodies subjected to
frictional contact, and then to follow the evolution of the damaged
material as a third-body within the tribological interface. The present
work mostly focuses on methodological statements about the gen-
eration and implementation of such a model, and proposes several
evolutions which might be implemented in further studies to
improve our understanding and prediction of friction and wear.

2. Sample generation

2.1. Principle of the method

In this paper, the surface of a solid object is modelled in a
simplified way, using the schematization presented in Fig. 1. We
focus on a portion of this surface represented by a rectangular
domain of dimensions Lx and Ly. The z-axis corresponds to the
direction normal to the solid surface (this direction will be consid-
ered as vertical in this work). Since we are interested in the
modelling of phenomena such as friction and wear, it is interesting
to consider a certain degradable depth H of the material composing
the solid surface. Hence, the model accounts for a certain volume of
material, delimited by two surfaces Sx and Sx' along the x-axis, two
surfaces Sy and Sy' along the y-axis, and two surfaces Sz and Sz' along
the z-axis. The four lateral surfaces may be planar (i.e. the sample
may be delimited by vertical walls), but they may also represent
periodic geometric boundaries. In the most common case, the surface
Sz might exhibit some roughness, as well as the lower horizontal
boundary Sz' . In some situations, the average depth H of Sz' may
represent a distance from the surface at which such phenomena as
wear and degradation have a limited effect, and its choice will thus
strongly depend on the considered material and on the contact
conditions. In other situations, it may also represent the depth of a
soft coating on a harder material, or a change of the mechanical
properties of the material composing the solid. In any case, however,
we suppose that the volume of interest (called "superficial layer" or

"degradable first body" in this work, and represented in pink in
Fig. 1) lies on an underlying material (called "substrate" or "non-
degradable first body", in light blue in Fig. 1), which is considered as
perfectly rigid and will be used as a lower boundary condition. The
lower border of this substrate is a surface Sz'' with an arbitrary
geometry.

In order to represent the evolution of the superficial layer submitted
to a frictional contact and the possible creation of third body, it is
desirable to introduce its microstructure in a geometrically relevant
way. In this work, this microstructure is modelled by the means of a
large number of polyhedral objects which form a complete partition of
the superficial layer. The underlying assumption is that most of the
deformation and degradation of the material will be related to relative
motions located at the joints between these polyhedrons, which will
thus be considered as individually rigid. Hence, the scope of this work
is restricted to materials exhibiting a discrete microstructure, such as
polycrystalline materials for example, and the case of amorphous
materials may not be properly accounted for in the present model.

In order to generate these polyhedrons (which will be termed
as "grains" in the remainder of this paper), a Voronoi tessellation is
adopted. This common approach is implemented in many com-
mercial computational packages, and provides a partition of an
infinite space of arbitrary dimension, based on a given set of
seeding points. Each "Voronoi cell" is attached to a certain seeding
point P, and describes a portion of the space corresponding to the
set of all the points which are closer to P than to any other seeding
point. The Voronoi cells are convex, they do not overlap, and their
union covers the totality of the considered space. In 3D, at the
heart of the cloud of seeding point, they are convex polyhedrons
and can readily represent the microstructure of a material. How-
ever, when approaching the border of the cloud of seeding points,
most of these cells are "open" because they have some infinite
dimensions. Hence, the method of sample generation proposed in
this paper will consist in creating a set of seeding points in the
superficial layer and in the substrate, perform a Voronoi tessella-
tion to generate the corresponding cells, and apply some special
techniques to deal with the cells located at the boundaries. The
remainder of this section will detail the algorithms developed in
order to generate the rough geometries of the surfaces Sz and Sz' , to
generate a proper microstructure in the neighbourhood of these
surfaces, and finally to deal with the lateral geometric conditions.

2.2. Generation of rough surfaces

For numerical purposes, the surfaces Sz and Sz' are defined in a
discrete way, using a fixed mesh on the rectangular domain. More
specifically, the domain of dimensions Lx � Ly is discretized into Nx �
Ny identical rectangular elements, each of which is then divided into
two triangles. Assigning a given elevation z nx;ny

� �
to each node of

this grid thus defines an univocal triangulated surface, which
represents an acceptable approximation of a real surface if the mesh
is fine enough. In any case, each triangular facets should be small
enough when compared to the typical scale of fluctuation of the
surface elevation, and the appropriate mesh fineness is thus strongly
problem-dependant. In the present case, the values Nx ¼Ny ¼ 100
are used.

There is a rich scientific literature about the characterization of
morphologies of real surfaces at diverse scales (e.g. [41,42]). Without
loss of generality, we employ in the present work a simple method of
surface generation based on discrete random fields. Such fields are
widely used in many scientific and engineering areas [43–45,17], and
several mathematical methods of generation have been proposed in
order, for example, to deal with non-Gaussian probability density
functions or with complicated autocorrelation patterns [46,47]. For
the sake of simplicity, the one we use in this work is very basic and is
based on the discrete 2D Fourier transform. The frequency content of

Fig. 1. Layout of the generated samples. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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the surface roughness is controlled by the means of a user-defined
2D discrete spectrum, defined on the abstract space of the 2D Fourier
modes. More specifically, one has to choose the (real) amplitudes
A nx;ny
� �

of the Fourier modes nx;ny
� �

, with the following con-
straints:

1rnxrNxþ1 and 1rnyrNyþ1 ð1Þ

A nx;Ny=2þ1
� �¼ 0 8nx and A Nx=2þ1;ny

� �¼ 0 8ny ð2Þ

A nx;ny
� �¼ A nx;Nyþ2�ny

� � 8nx ð3Þ

A nx;ny
� �¼ A Nxþ2�nx;ny

� � 8ny ð4Þ
In other words, the amplitude of the 2D spectrum should be defined
on the Nxþ1ð Þ � Nyþ1

� �
discrete space, be null on the row Ny=2þ1

and on the column Nx=2þ1, and symmetric with respect to this row
and this column. Again, for the sake of simplicity and without any
loss of generality, we adopt here the following general formulation
for the input spectrum:

A nx;ny
� �¼ exp �λx nx�nx0ð Þ�λy ny�ny0

� �� �

for nx0rnxrNx=2 and ny0rnyrNy=2

A nx;ny
� �¼ 0 elsewhere ð5Þ

hence, we set the amplitude of a fundamental mode nx0;ny0
� �

to 1,
and we apply an exponential decay of parameters λx in the
x-direction and λy in the y-direction, before applying the symmetry
conditions (3) and (4). Each of these modes is then attributed a phase
angle θ nx;ny

� �
, randomly sampled between �π and π. Once again, a

specific symmetry condition is to be applied:

θ nx;ny
� �¼ �θ Nxþ2�nx;Nyþ2�ny

� � ð6Þ

Then, the complex Fourier spectrum is computed by

Z nx;ny
� �¼ A nx;ny

� �
exp iUθ nx;ny

� �� � ð7Þ

A random discrete 2D signal zc nx;ny
� �

is then obtained directly by a
2D Fast Fourier Transform (FFT) applied to Z nx;ny

� �
. If conditions

(1)–(4) and (6) are verified, this signal is real. Finally, the current
standard deviation σc of the field is computed, and the final surface
z nx;ny
� �

is obtained after scaling, in order to match a desired mean
value μ and a desired standard deviation σ:

z nx;ny
� �¼ zc nx;ny

� � σ
σc

þμ ð8Þ

Three examples are provided in Fig. 2. For each one, the left-hand
column describes the discrete amplitude decay in the x and y
directions, the central column provides the amplitude of the whole

Fig. 2. Examples of rough surface generation on the unit square, with Nx ¼Ny ¼ 100, nx0 ¼ ny0 ¼ 2, μ¼ 0, and σ ¼ 0:03; (a) λx ¼ λy ¼ 0:15; (b) λx ¼ λy ¼ 0:6; (c) λx ¼ 0:6
and λy ¼ 0:15
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2D spectrum, and the right-hand column provides an illustrative
realization of the rough surface on the unit square, for a given set of
random phase angles. From this figure, we observe that the gener-
ated surfaces are bi-periodic, and that a good control is achieved on
the amplitudes and frequencies of the roughness in both x and y
directions. This methodology will be used in the remainder of this
paper, but any other method of surface generation may be applied as
well in the framework described hereafter.

2.3. Discretization of the upper face

As stated in a previous subsection, the use of Voronoi tessellation
provides a nice set of conforming and non-overlapping convex
polyhedrons at the heart of the cloud of seeding points, but leads to
open cells when close to a border of this cloud. Hence, if one wants to
partition the volume of degradable first body presented in Fig. 1 with
convex polyhedrons, special treatments have to be applied in the
neighbourhood of the upper, lower, and lateral faces. These techniques
are presented in this subsection and the next two ones. To illustrate
the techniques described in these subsections, Figs. 3–5 provide
illustrations of the employed algorithms in a 2D case. This simplifica-
tion is used here to ease understanding, but the actual methods that
were developed are in 3D and rely on the same concepts.

Fig. 3a presents a random cloud of seeding points. A typical
distance d between neighbouring points is computed in the
following way:

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Stot=n

p
in 2D ð9Þ

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vtot=n3

p
in 3D ð10Þ

In these expressions, Stot (respectively Vtot) represents the total
surface (respectively volume) into which n seeding points have been
generated. Fig. 3b presents a random curve crossing this cloud and
representing in 2D the desired upper surface Sz . This surface is
discrete, i.e. it is a set of segments in the 2D case, and a set of
triangular facets in the 3D case, as explained in Section 2.2. From
Fig. 3c, it clearly appears that a direct application of a Voronoi
tessellation of the cloud of points will not lead to acceptable results.
A simple technique would consist in computing the intersections of
the curve with the cells it crosses, and to keep only the portions of
cells located below the curve. This approach, however, often leads to
complicated intersection patterns with very small and very elongated
cells (e.g. in black circles in Fig. 3c), which may lead to a superficial
microstructure different from the one in the bulk of the material. To
overcome this drawback, it is necessary to ensure that Sz only crosses
large cells close to their middle, in order for the lower parts of these
cut cells to be large enough. To perform this, we first delete all the
seeding points closer to Sz than a certain distance d1 ¼ α2

1d
� �

(Fig. 3d).
A typical value of α1 ¼ 1 seems to provide acceptable results. In 3D,
the closest distance from a seeding point P to the surface Sz is not
difficult to compute since this surface is triangulated. Hence, a closest
projection of a given point P on Sz only requires a very fast discrete
search. This projected point may be a node of the triangulated surface
or lie on an edge or on a facet, and directly provides the distance from
the seeding point P to Sz .

After this stage, additional seeding points are input at random
positions on Sz (blue dots in Fig. 3e), and a Voronoi tessellation is
finally performed (Fig. 3f). In this tessellation, Sz only crosses large
cells in their middle, and it is easy to determine their intersections
with the rough curve/surface (green squares in Fig. 3g). In 2D, these
intersection points are then linked by segments in order to close the
lower parts of the cut cells, the upper parts are deleted as well as all
the cells located above the curve, and these operations result in a
satisfactory approximation of Sz with a proper underlying microstruc-
ture (Fig. 3h). In 3D, the intersections of the cells edges with Sz are also
easy to compute since this surface is piecewise bilinear. Closing the

lower part of a given cut cell, however, is not straightforward since the
different intersections of the cell's edges with Sz are generally not
coplanar. Hence, the vertices of the cell located below Sz and its
intersection points with Sz are altogether submitted to a convex-hull
algorithm, which results in a new convex cell with all the vertices
located below or exactly on Sz.

2.4. Discretization of the lower face

This last observation (the non-coplanarity of the points of
intersection of a polyhedral cell with a non-planar surface) is the
reason why the method used to discretize the lower face Sz' is
slightly different from the one presented for Sz in the previous
subsection. Indeed, it is impossible to use a non-planar surface to
divide a given cell into two conforming convex polyhedrons (at
least one of them will have to be non-convex). This is not an issue
in the case of Sz because the upper part is discarded, but it
prevents from using the same method to define the surface Sz'
separating the superficial layer and the substrate. An alternative
method, illustrated in Fig. 4, is proposed. Fig. 4a�c presents the
same kind of situation than in the previous subsection, with the
same difficulties in Fig. 4c if a Voronoi tessellation is performed
directly in the initial cloud of seeding points. Instead of this, we
propose to delete all the seeding points that are either (i) located
below Sz' and within a distance d2 ¼ α2

2d
� �

or (ii) located above Sz'
and within a distance d3 ¼ α2

3d
� �

(Fig. 4d). The values α2 ¼ 4 and
α3 ¼ 0:1 seem to provide satisfactory results. Then, the remaining
points located above Sz' and within a distance d2 (Blue dots in
Fig. 4d) are "mirrored", i.e. copied in the lower part of the surface
at a symmetrical position with respect to their closest projection
on Sz' (Fig. 4e). A Voronoi tessellation is then performed and results
in a set of cells, with the desired surface being approximated by
the joints between some of them (Fig. 4f). This approximation is
better when the cloud of seeding points is dense and when the
curvature of the target surface is limited, but will always result in a
more approximate surface than with the procedure described in
Section 2.3. However, it provides a separation of the considered
space into two sets of conforming convex polyhedrons. Depending
on the problem to be treated, the surface Sz' may be taken as the
one defined in the previous stages (the interface between the
superficial layer and the substrate will then respect the input
roughness, Fig. 4g), or as the one located above the first layer of
cells (the interface will then present the same level of entangle-
ment than in the microstructure of the bulk material (Fig. 4h).

2.5. Discretization of the lateral faces

At the lateral faces Sx, Sx' , Sy and Sy' , two different kinds of
geometrical conditions may be introduced. These faces may be
perfectly planar walls (which makes it possible to apply well-
controlled force or displacement boundary conditions on them), or
may present a geometrical periodicity (which makes it possible to
model an infinite surface with a controlled periodicity). This second
case relies on the fact that the rough surfaces Sz and Sz' were made
bi-periodic in the method described in Section 2.2. Moreover, these
geometric boundary conditions are not coupled, which means that
one may apply one type of condition in the x-direction and the other
one in the y-direction. Fig. 5a presents such a situation, with a cloud
of seeding points defined in a 2D Lx � Ly rectangular domain. Fig. 5b
shows the Voronoi tessellation applied directly on this cloud of
points, and illustrates the difficulties related to open cells at the
domain boundaries. In Fig. 5c, a method is proposed to enforce a
wall-type geometric condition in the x-direction. This method is
similar to that used in the previous subsection, and was also used in
[15, 17] for bounded Voronoi tessellation of a convex domain. Each
seeding point closer to the plane Sx than a given distance d4 ¼ α2

4d
� �
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is mirrored (i.e. copied at a symmetric position with respect to its
orthogonal projection on Sx), and the same operation is performed
for Sx' . On the other hand, Fig. 5d shows how to enforce a periodic
geometric condition in the y-direction. Each seeding point closer to
the plane Sy than the distance d4 is copied at a new position, with
the same x-coordinate and a y-coordinate shifted by a distance Ly
equal to the desired periodicity. The same operation is performed for
Sy' , with a y-shift equal to �Ly. As shown in Fig. 5d, these opera-
tions need also to be performed on the seeding points added when
previously dealing with the surfaces Sx and Sx' . A typical value of
a4 ¼ 5 is found to provide good results. A Voronoi tessellation is then
performed (Fig. 5e), and only the Voronoi cells corresponding to the
initial cloud of seeding points are kept (Fig. 5f). These cells present
the desired geometric properties, i.e. in the present case they form
planar walls in the x-direction and a geometric periodicity in the
y-direction. The techniques presented in this subsection and in the
two previous ones are implemented in the software MATLAB, and are
applied on a 3D illustrative sample in Fig. 6, with various lateral geo-
metric conditions.

3. Examples

3.1. Dimensions of sample and number of cells

Fig. 7 presents four illustrative samples generated on the unit
square domain with bi-periodic boundaries. The same parameters
are used for the random generations of the upper surfaces (i.e.
nx0 ¼ ny0 ¼ 2, σ ¼ 0:02, and λx ¼ λy ¼ 0:6). The samples shown in
Fig. 7a and b illustrate the effect of the number of seeding points
introduced in the volume of the superficial layer with the same

average depth H ¼ 0:2, since they respectively contain 1000 cells
and 20,000 cells. It clearly appears that the number of cells should
not be too small if one wants to render properly the desired
statistical properties of the upper surface, especially when this
surface has important local curvatures. Fig. 7c and d possess
respectively 2500 and 7500 cells for respective average depths
H¼ 0:1 and H ¼ 0:3, and illustrate how the method of sample
generation allows for various dimensions of the volume of
degradable first body with similar grain size.

3.2. Microstructure of the material

In Fig. 8, several examples of possible microstructures are
presented, all of which containing 5000 cells on a unit square
domain with an average depth H ¼ 0:2, and the same roughness
parameters. Wall-type lateral conditions are applied to represent
the intersections of these microstructures with vertical planes.
Fig. 8a and b illustrates the cases of regular microstructures, for
which the seeding points are located on regular lattices (a cubic
and a hexagonal lattice respectively). The case presented in Fig. 8c
is analogous to that of Fig. 8b (i.e. regular hexagonal lattice), except
that a small perturbation is applied to render it more realistic.
Each seeding point is positioned on the lattice, and then moved
from a small distance in a random direction of space. This distance
is randomly chosen in the interval 0; dr

� �
, where dr ¼ a2r d

� �
is a

fraction of the average distance between two seeding points as
described in Eq. (10). In the case of Fig. 8c we took ar ¼ 0:2, but this
parameter may be different and bring an additional degree of
freedom in the definition of the material microstructure. Choosing
large values of ar (typically larger than 1) leads to a distribution
similar to that of a perfectly random cloud of points.

Fig. 3. 2D illustration of the technique used to discretize the rough upper surface. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 4. 2D illustration of the technique used to discretize the rough lower surface and the substrate. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. 2D illustration of the technique used to apply wall-type geometric conditions along the x-direction and periodic geometric conditions along the y-direction.
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Fig. 8d and e illustrates the cases of anisotropic microstructures
which may occur in some particular materials. In Fig. 8d the grains
are flat (their average vertical dimension is twice smaller than
their average horizontal dimension), while in Fig. 8e they are
vertically elongated (their average vertical dimension is twice
larger than their average horizontal dimension). Such anisotropies
cannot be easily introduced by simply acting on the initial set of
seeding points, since any dilation of a random cloud of points will
leave its isotropy unaltered. Alternatively, a simple technique is
used here, based on a dilation of the microstructure itself. In the
case of Fig. 8d, for example, the sample was generated using all the
techniques presented earlier in this paper, but on a square domain
of dimensions 0:5� 0:5 instead of 1� 1. Then, at the end of the
generation, all the horizontal coordinates of the vertices of the
cells were multiplied by a factor 2, resulting in this flat micro-
structure on the 1� 1 domain. These operations did not disturb
the frequency content of the upper surface, since all the modes
introduced in the random surface generation are normalized with
respect to the sample dimensions. On the contrary, in Fig. 8e, the

sample was first generated on a 2� 2 domain and its horizontal
dimensions were then divided by 2.

In further developments, it seems possible to implement techni-
ques allowing the introduction of inclined anisotropic microstruc-
tures, of controlled distributions of the grain size (like already
proposed in [15,17,48]), or making it possible to have an even better
control on all the features of the microstructure (see e.g. [49]).

3.3. Surface roughness

Fig. 9 illustrates the effect of the parameters introduced during
the generation of the rough surfaces Sz and Sz' on the generated
sample. Fig. 9a�c presents respectively a low-frequency rough-
ness, a high-frequency roughness, and an anisotropic roughness of
the upper surface Sz of the degradable first body. These different
situations seem to be handled well by the generation algorithm,
although Fig. 9b shows that it is difficult to render properly a
desired very rough surface with a limited number of convex
grains. Fig. 9d� f presents the same kind of results for the surface

Fig. 6. Example of micro-structured degradable first-body containing 5000 grains, with a rough surface and various lateral conditions; (a) walls along x and y;
(b) x-periodicity; (c) y-periodicity; (d) bi-periodicity.
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Fig. 7. Illustrative samples generated on the unit square domain with various average depths and numbers of cells.

Fig. 8. Illustrative samples generated on the unit square domain with various inner microstructures.
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Sz' separating the degradable and the non-degradable parts of the
first body. In Fig. 9d (flat interface) and e (low frequency rough-
ness), the strategy described in Fig. 4g is applied, i.e. these
interfaces respect the input statistics. In Fig. 9f, however, the
strategy of Fig. 4h is applied, and an additional layer of cells is
considered to belong to the non-degradable part of the first body.
This way, the interface is globally flat but the microstructure is
entangled in the same way than in the bulk of the material.

4. Illustrative simulation

4.1. Implementation in the NSCD framework

The Discrete Element Method is a well-known numerical model-
ling framework which was initially proposed by [7], and which is
classically based on an explicit time-integration of the laws of motion
of each grain composing a granular assembly. These laws of motion
depend on the forces applied on each grain, and thus require the
definition and calibration of proper contact laws which provide the
possible attractive, repulsive, and frictional forces between the
contacting grains. An alternative approach for dealing with multi-
body multi-contact problems was later proposed in [50] and further
developed in [51,52]: the Non-Smooth Contact Dynamics (NSCD)
approach. In contrast with the classical DEM, the NSCD method is
based on an implicit time-integration and a non-linear contact solver,

and does not require such numerical regularization parameters as
normal or tangential stiffness at contact (hence the "non-smooth"
denomination). Among the advantages of the NSCD approach, one
may mention the possibility to use larger time-steps than in the
classical DEM, and the ability to couple in the same system of
equations both rigid discrete elements and deformable continuous
elements (using FEM). It has been widely used in many scientific and
engineering fields. In the present work we make use of the open-
source software LMGC90 [53], which implements all the features of
the NSCD approach, together with a large choice of contact laws.
Moreover, it is able to deal efficiently with complex particle shapes
such as convex polyhedrons, by accounting for different types of
contact such as node-face, edge-face, or edge-edge.

The samples generated using the method described in Section 2
may thus be introduced in this software, provided that a few
"cleaning" operations are performed. The first operation consists in
deleting a few particles that may be too small (e.g. with a volume
smaller than 1% of the average grain volume) since they would
complicate the dynamic simulation without having a significant
mechanical contribution. For the same reason, we also ignore the
particles which are too elongated (e.g. with a ratio between the
largest and the smallest dimension larger than 20), although such
particles usually do not occur if the geometrical boundaries are
properly accounted for (Section 2). The last operation consists in
"collapsing" the too short edges (e.g. shorter than 1% of the average
edge length of the given cell) and the too small angles (e.g. smaller

Fig. 9. Illustrative samples generated on the unit square domain with various types of surface roughness; (a)�(c) roughness of the upper surface Sz; (d)�(f) roughness of the
lower surface Sz'
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than 11) that often appear in the Voronoi cells. The algorithm
developed for this purpose is very close to that proposed in [54] to
overcome analogous difficulties.

4.2. Geometry, contact law and loading

The sample generated for simulation and introduced in LMGC90
is shown in Fig. 10a. It is composed of a lower first-body, with a
degradable part and a non-degradable part, and of an upper first-
body which is considered as non-degradable for the sake of
simplicity. The horizontal dimensions are 500 μm� 500 μm, and
the average depth of degradable material is H¼ 80 μm. The sample
contains about 27,000 polyhedral grains, with an average dimension
of the grains close to 10 μm. The contacting surfaces of the upper
first-body and of the degradable part of the lower first-body are
randomly generated with the same parameters (i.e. nx0 ¼ ny0 ¼ 2,
σ ¼ 8 μm, and λx ¼ λy ¼ 0:5, see Fig. 10c and d), and the interface
between the degradable and the non-degradable parts of the lower
first-body is globally flat but uses the approach of Fig. 4h to entangle
properly the microstructure (Fig. 10b).

Since this sample is used here for illustrative purpose only, a very
simple contact law is used for simulations. A non-interpenetration
condition is implemented by the means of a Signorini condition, and
a normal attractive cohesive force is introduced between contacting
grains. This force is equal to nUc, where n is the number of contact
points used by LMGC90 to deal with complex contacts between
polyhedrons (for example, nC3 or 4 for a face-face contact, n¼ 1
for an edge-edge contact, etc.) and c is set to 0.1 N in the present
case. When applied to a real case, such simulation might require less
crude contact laws, as discussed in the last section of this paper.

The sample is bi-periodic in the horizontal directions. The loading
conditions applied to the sample are very classical, and similar to that
usually applied when modelling this type of system. The six degrees
of freedom of the non-degradable part of the lower first-body are
fixed, while the upper first-body is considered as a unique rigid
body, and is fixed in all its rotational degrees of freedom and in the
y-direction translation. This rigid body is also submitted to an
imposed velocity in the x-direction and to a downward force in the

z-direction. This velocity and this force are applied following the
timing detailed in Fig. 11: the vertical force is linearly increased from
zero to a value Fz between t ¼ 0 and t ¼ t1 and then fixed, while the
imposed velocity is equal to zero until t ¼ t1, linearly increased to a
value Vx until t ¼ t2, and then fixed. The chosen value for the vertical
force is Fz ¼ �125 N, corresponding to a moderate (500 MPa) local
contact pressure. Besides, we set Vx ¼ 1m=s, t1 ¼ 10 μs, and
t2 ¼ 20 μs. The time step for the implicit integration of the laws of
motion in the NSCD framework is set to 10�9 s, the total simulated
time is 120 μs, and the simulation is launched on 16 CPU on the
computation cluster of the LaMCoS.

4.3. Numerical results

Every 0:1 μs, the total normal and tangential forces applied on
the moving upper first-body are computed, and an instantaneous
mobilized friction is thus obtained. These "numerical measures"
are plotted in Fig. 12, and appear to be strongly fluctuating.
However, the application of a moving average to this discrete
signal makes it possible to read the general trend of the system.
Hence, we may observe that the mobilized friction increases

Fig. 10. Sample generated for discrete modelling; (a) full sample; (b) non-degradable part of the lower first-body (2498 grains); (c) degradable part of the lower first-body
(21,925 grains); (d) upper non-degradable first-body (2583 grains, flipped upside-down to show topography).

Fig. 11. Timing of the boundary conditions applied to the upper first-body.
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progressively until reaching a somewhat constant value (although
very strongly fluctuating) at t � 50 μs. These fluctuations are to be
related with local dynamic instabilities, force chains creations and
breakages, etc. The average friction ratio corresponding to this
established regime is close to 1, which is a very high value but may
be realistic in some specific situations. In order to obtain a more
realistic behaviour from a quantitative point of view, however, it is
obvious that a proper calibration of the local contact laws seems
necessary.

Fig. 13 provides a side-view and a perspective view of the
sample at t ¼ 100 μs, with the colours of the grains corresponding

to their respective velocity magnitudes. It clearly appears that the
grains belonging to the lower half of the degradable part of the
lower first-body seem to remain still, and that the microstructure
remains mostly unaltered in this region. On the contrary, the
grains located in the upper half of the degradable body are
submitted to motion, which means that the microstructure and
the initial roughness of the surface have been completely
degraded by the friction. This observation is in good agreement
with the third-body theory, which states that the local friction is
controlled by the rheology of the degraded material that friction
itself has created. Fig. 13b also shows that the velocity field in the
third-body layer is not homogeneous at all, and that some clusters
of particles seem to be moving at a velocity close to that of the
upper first-body while some others are moving more slowly. One
may conclude that there is a high level of dynamic complexity in
the third-body flow patterns, which might be interesting to study
in order to understand their contribution on the macroscopic
friction.

Fig. 14 provides some quantitative support to the previous
observations, by plotting the individual velocity of each grain as a
function of its z-coordinate. The obtained velocity field is very
heterogeneous and fluctuating, but the average velocity profile
clearly shows that the microstructure of the lower first-body is
mostly unaltered on the first 60 μm, and that the material is then
submitted to a sheared flow on a depth of roughly 40 μm, which
corresponds to the third-body layer. It also clearly appears that
there is a velocity jump between the upper part of the third-body
(with an average velocity Vx ¼ 0:4 m=s) and the upper first-body
(with a fixed velocity Vx ¼ 1 m=s).

Obviously, the quantitative and qualitative results proposed in
this section are not connected to the real behaviour of any system,
since no calibration was performed on the contact laws, surface
roughnesses, and material microstructures. It is clear that different
modelling choices may lead to very different behaviours, which

Fig. 12. Mobilized friction (i.e. ratio of the tangential and normal forces) along time
during the simulation: Instantaneous values, moving average (with a 10 μs time
span), and average value in established regime (after 50 μs).

Fig. 13. Velocity magnitudes of the grains at t¼100 μs; (a) side view, including the upper substrate; (b) perspective view, with the upper substrate omitted for the sake of
visibility.
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may help to understand the connexions between the local scale
and the global scale. This will be the topic of future studies.

5. Perspectives

Thanks to its generality and its flexibility, the numerical framework
presented in this paper may have an interesting potential in future
modelling of friction and wear in dry contacts. One important con-
dition for this type of model to be realistic, however, is the imple-
mentation and use of more physical contact laws. For the grains
belonging to the degradable first-body, such ingredients as normal and
tangential contact stiffness (in order to represent more accurately the
stress state in the bulk of the material and the Poisson effect, like for
example in [38]) and a damage law (in order to represent the strength
evolution at the grain joints submitted to complex loadings [26])
should be introduced in the model. On the other hand, for the grains
belonging to the third-body (i.e. completely separated from the first-
bodies), surface energy evolving with the physical environment of the
grain (e.g. temperature, chemical reactivity [55] or gas contamination
[56]) represents a promising trend.

From a purely mechanical point of view, a possible evolution of
the model may account for the deformability of the non-
degradable parts of the first bodies (in order to investigate the
possible stress redistributions induced by the degradation of the
first-bodies) or of the individual grains (in order to approach more
realistically the phenomenology of the third-body, which might
not always be considered as a granular collection of rigid bodies).
Such approach may be implemented in LMGC90 thanks to the
natural ability of NSCD to couple DEM and FEM. These possible
evolutions, however, will require a proper calibration based on
experimental observations and measurements.
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