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Abstract The efficiency of a numerical model depends 
on both the realism of the assumptions it is based on, 
and on the way its parameters are assessed. We propose 
a numerical model based on the discrete element 
method which makes possible, thanks to the definition 
of an appropriate contact law, to simulate the 
mechanisms of energy dissipations by friction and 
shocks during the propagation of an avalanche of 
granular material on a slope. The parameters of the 
contact model are obtained from laboratory 
experiments of single impacts. A particular attention 
was paid to the values of the run-out, the morphology 
of the deposit, the proportions of energy dissipations by 
impacts or friction, and the kinetic energies of 
translation and rotation. The results of this numerical 
study provide valuable information on the relevance of 
some usual assumptions of granular flow continuous 
models. 
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Introduction 

Understanding and prediction of rock avalanches 
are key elements for the risk management in the 
development of mountain areas. Due to the complexity 
of the involved mechanisms, numerical models such as 
continuous models (McDougal and Hungr [2004], 
Mangeney-Castelnau et al. [2003], Tommasi et al. 
[2008]) based on fluid mechanics or discrete element 
models (Cundall and Strack [1979]) are needed to 
estimate the morphology of the deposit or the 
propagation distance of a rock mass. 

Compared with continuous models, discrete 
models allow more accurate modelling of the 
propagation phenomenon, without the need of 
accounting for all existing mechanisms of interaction. 
At the scale of an actual event, rather simple contact 
laws can be used without any loss of accuracy. 

The model proposed here is based (i) on realistic 
block shapes and (ii) on the definition of simple 
interaction laws that hold physical parameters easily 
assessable. These laws incorporate the mechanisms of 
energy dissipation in a global way.  

To validate this approach, which is extremely 
difficult to carry out in the case of rock avalanches, we 
replicated laboratory experiments conducted under 
idealized test conditions (Manzella and Labiouse 
[2009]). Model parameters, optimized through tests 
conducted on single brick release, were used to simulate 
the collective behavior of a set of bricks on a slope. 

The advantage of the numerical model is that it 
gives access to quantities difficult to assess 
experimentally at any point of the granular mass: 
velocity and rotation of bodies, energy dissipated by 
friction or shocks with the slope or within the mass 
movement, nature of flow and geometry of the final 
deposit. 

After the validation, the numerical model is used 
to evaluate the quality of some usual assumptions of 
continuous models of granular flows (i.e. assumptions 
of no-dilatancy and of velocity uniformity in a cross-
section of the flow), and the relevance of some 
parameters by studying the different modes of energy 
dissipation along the slope and inside the flow. 

 

Numerical model 

Discrete models have the advantage to model the 
deterministic movements of a set of interacting 
particles. We present in this section the numerical 
model implemented within the C++ toolkit DEMbox 
(www.cgp-gateway.org). The movement of each block, 
governed by the fundamental principle of dynamics, is 
integrated by means of the velocity-Verlet scheme 
(Allen and Tildesley [1989]) which is a good 
compromise between accuracy of the block velocities 
(for both translations and rotations) and memory 
saving. 

Rock avalanches are far from being treated as a 
quasi-static evolution of block movements. For this 
reason, the so-called local non-viscous damping 
(Cundall et al. [1982]) - which affects the block 
movements, can not be used since it would lead to 
unphysical behavior. Indeed, this artefact of calculation 
dissipates energy in an arbitrary manner. It affects both 
the kinematics of free bodies and bodies that interact 
with each other. 

Another solution to introduce dissipative 
behaviour is to account for a local viscous damping at 
the contact level (Cleary and Prakash [2003]). This 
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solution has also been set aside because it introduces a 
viscosity parameter which can not be connected to a 
well-defined dissipation rate in the case where multiple 
contacts occur at the same time. More precisely, the 
effective mass involved in the critical viscosity is not 
well-defined and should depend on the positions of the 
contact points and their amount. 

In fact, the energy loss may result from very 
complex physical mechanisms (heat production, wave 
propagation...) that are beyond our understanding in 
the case of collective behavior. For the contact-force 
laws, we wanted a simple formulation while 
incorporating the energy dissipation due to block 
impacts. We opted for minimalist laws where friction 
and normal damping coefficients are required to 
dissipate the kinetic energy of the blocks. We will see in 
the sequel that the simple laws proposed here are 
sufficient to satisfactorily describe the main rebound 
patterns even if our model is obviously not able to 
reproduce more complex behaviors like e.g. rocking 
block (Bourgeot et al. [2006]). 

 
Block shapes 

In the rock avalanche problematic, the shape of the 
blocks is of primary importance and it must be taken 
into account explicitly in the model. Different strategies 
are possible (e.g. polyhedra, clumps) but we chosed 
sphero-polyhedra which has several advantages 
including a highly simplified contact detection (Alonso-
Marroquin [2008]). The block shape is defined by a set 
of vertices interconnected by edges (lines) and faces 
(Fig. 1). The rounded shape is then defined by sweeping 
a sphere of radius r along each point of its edges and 
faces. From a mathematical viewpoint, our block shapes 
can be seen as the Minkowsky sum of a polyhedron with 
a sphere (Van Den Bergen [2003]).  
 

 
 
Figure 1. Layout of a brick modelled by sphero-polyhedron. 

 
In practice, the contact position, the overlap and 

the local frame are determined by considering a few 
basic geometric computations based on the distances 
between points, lines and planes. This geometric trick 
allows the contact area between sphero-polyhedra to be 
defined by a set of contact points resulting from 
elementary intersection tests involving the swept sphere 
radii: (1) vertex-vertex, (2) vertex-edge, (3) edge-edge, 
and (4) vertex-face. One can better appreciate the 
benefit of this method when considering for example 

face-face intersection test: it is simply replaced by a set 
of edge-edge and vertex-face tests. The sphero-
polyhedra method has many other benefits such as the 
ability to define concave and/or hollow shapes. Also, 
the normal vectors at contacts are well defined. 

 
Contact force laws 

The interaction model integrates the energy 
dissipation related to friction and to normal damping 
between solids in contact. The most minimalist 
formulation we found for the normal force is a linear 
elastic law with two different stiffnesses in case of 
loading or unloading (Banton et al. [2009]). This way, 
the rate of non-restored work of the normal force (i.e. 
the normal restitution parameter en

2
) after an impact is 

the ratio between the unloading and the loading 
stiffnesses. As described in Figure 2, the other 
parameters of the contact law are the Coulomb friction 
coefficient (μ) and the normal and tangential stiffnesses 
of the contact (kn and kt respectively). The number of 
parameters of a given contact is therefore equal to four. 

 

 
 

Figure 2. Normal and tangential Force-displacement relations 
with: hn=normal interpenetration of the two solids, fn=normal 
repulsive force, ht=tangential relative displacement between 
the two solids, ft=tangential force. Energy dissipations are 
represented in grey. 

 

Assessment of the contact parameters 

As an attempt to give the proposed model a 
predictive character, the physical parameters of the 
contact law were assessed from additional experiments 
of the impact of a single brick on a support (clay brick 
and plastic support called “forex”, identical to the ones 
used by the Manzella and Labiouse [2009]). The brick 
was filmed at 1,000 images per second by two high-
speed cameras positioned along orthogonal directions. 

After synchronization (impact time is set as the 
time origin) and scaling (pixel sizes for each camera), 
the 2D trajectories of four vertex points for each camera 
were obtained by means of digital image correlation and 
made possible the 3D trajectory reconstruction. The 
parameters involved in the theoretical trajectory (in 
particular the velocities before and after the impact) 
were then optimized by means of an error function that 
gives a distance measure between the identified 
trajectory and the theoretical one (that obey Newton’s 
second law). Four Brick/Support impacts and two 
Brick/Brick impacts were analysed, and the contact 
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parameters were identified for each kind of contact so 
as to optimize the trajectories of all the studied impacts. 
The resulting parameters are stored in Table 1. Fig. 3 
proposes more visual results, and describes from left to 
right the different steps of the parameters assessment: 
(i) experimentation and shooting of the impact, (ii) 
mathematical identification of the trajectory before and 
after impact, and (iii) numerical identification of the 
parameters (stored in Table 1) allowing to optimize the 
simulation of all the experimental impacts. Figs. 3a and 
3b correspond to the two cameras with perpendicular 
axes used for the shooting. 

 
 Table 1. Optimal parameters obtained by minimizing an error 
function 

 

   
 
Figure 3. Example of successive steps for the identification of 
the contacts parameters (time interval of 20ms) ; a. Camera 1 ; 
b. Camera 2. 

 

 
 
Figure 4. Layout of the experimental device used in Manzella 
and Labiouse (2009). 

 

Validation of the model on a small-scale experiment 

The contact laws and model parameters have been 
proved as consistent in the case of a single impact, but a 
validation is needed to make sure that it is able to 
predict accurately the behaviour of a granular flow 
involving a large number of particles. This validation is 
performed using the experimental results by Manzella 
and Labiouse (2009). These authors realized a series of 
launches of a large number of bricks on a device 
composed by two rectangular boards (3m*4m) of forex 
(kind of plastic) linked by a hinge. The first board was 

fixed and horizontal while the second was inclined by a 
user-defined angle. A rectangular box (height 20cm, 
width 40cm, depth 60cm) was filled with a given 
amount of material, and positioned at a determined 
height on the inclined plane. A trap was open to release 
the material, which propagated on the slope until it 
eventually deposited on the horizontal plane. The 
validation proposed here focuses on one specific 
experimentation involving 40 litres of randomly poured 
bricks (size of 3.1cm*1.5cm*0.8cm, material density of 
17kN/m

3
, apparent density of 10kN/m

3
), launched on a 

45° slope from a height of 1m. The bricks and support 
were identical to the ones used for the identification of 
the contact parameters in the previous section. The 
layout of the experiment is represented in Fig. 4, as well 
as some of the measurements performed on the 
material deposit : length L, runout R, width W, height 
H, travel angle φCM (related to the centre of mass before 
and after the flow), and Fahrböschung φap (related to 
the extremity of the deposit as defined by Heim [1932]). 
 

 
 
Figure 5. Perspective view of the avalanche predicted by the 
numerical model. 

 

 
 
Figure 6. Comparison between the experimental and 
numerical results; a) horizontal and vertical contours of the 
deposit; b) Velocity of the avalanche front on the horizontal 
plane. 

 
This experiment is reproduced numerically with 

6300 bricks randomly poured in the starting box. This 
number of bricks corresponds to a rough estimate of the 
one used in the actual experiment. The simulation starts 
when the lower face of the box is deleted. Fig. 5 shows 

 en
2
  kn kt/kn 

Brick/Support 0.53 0.46 10
5
 0.42 

Brick/Brick 0.13 0.86 10
5
 0.27 
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several stages of the simulated avalanche with a time 
step of 300ms. The results of the simulation are 
compared with the experimental ones in Fig. 6. In Fig. 
6a, the shapes of the numerical and experimental 
deposits are compared in terms of their contour in a 
horizontal and a vertical plane. A very satisfying 
correspondence appears for the horizontal contour and 
this correspondence is a bit less accurate for the vertical 
contour, the numerical deposit having a larger height 
than the experimental one.  

Fig. 6b presents the evolution of the mass front 
velocity on the horizontal plane with respect to the 
position of this front, as provided by the experimental 
and numerical results. The two curves show a good 
qualitative correspondence. The observed quantitative 
differences may be linked to the inaccuracy of the 
concept of “mass front”, which has no rigorous and 
objective definition and was determined by different 
methods in the experimental and numerical 
frameworks. Qualitatively, this curve provides some 
interesting information about the kinematics of the 
deposit. We first observe a strong reduction of the 
velocity corresponding to the first impact of the 
avalanche on the horizontal plane (from x=0m to 
x=0.2m), then a zone for which the velocity does not 
decrease a lot, corresponding to the accumulation of the 
material on the plane (between 0.2m and 0.6m), and 
finally an important stage of deceleration until the end 
of the motion (between 0.6m and 0.8m). Table 2 
presents a quantitative comparison between the 
dimensions of the deposit provided by the experiment 
and by the simulation, and shows a very good 
correspondence except for the deposit height. This 
result emphasizes the predictive ability of the proposed 
numerical model, since this correspondence was 
achieved by fitting the contact parameters of single-
impact experiments instead of running a back-analysis 
on the full-scale experiment. It shows that it is possible 
to assess the collective behaviour of a large number of 
particles if the individual behaviour of each particle is 
well-defined. 
 
Table 2. Quantitative comparison between the experimental 
and numerical deposits. 

 

Numerical study of the kinematics of the granular 

flow 

In order to assess the validity of some usual 
assumptions adopted for continuous modelling of 
granular flows, the velocity field, angular velocity field, 
and stress field inside the flow are computed using 

spatial interpolation techniques. Figure 7 provides in 
shades of grey the velocity magnitude (in m/s), the 
angular velocity magnitude (in °/s) of the bricks, and 
the average stress (in Pa) in the plane of symmetry of 
the flow, at different stages of the simulation. Figure 7a 
shows that the velocity magnitude of the particles 
composing the flow increases regularly while the 
avalanche develops, and decreases suddenly when the 
flow reaches the transition between the two planes. The 
velocity profile in a vertical direction appears to be 
uniform at any abscise of the flow, and there is no 
pronounced vertical velocity gradient. It may be seen on 
Figures 7b and 7c that the magnitudes of the angular 
velocity of the bricks and of the average stress are much 
more important around the angle between the two 
planes than in the slope and in the deposit. It seems 
therefore that the zone of transition between the two 
planes induces a brutal reduction of the velocity 
magnitude, but also triggers an important perturbation 
of the flow by increasing the rotation of the particles 
and the stress level. Moreover, the angular velocity of 
the bricks accumulating on the horizontal plane after 
the transition is very low, while their velocity is uniform 
on the deposit and decreases along time until the end of 
the motion (at t=1.4s). The particles belonging to the 
accumulated deposit seem therefore to have a slow 
motion of decelerating translation. This motion is 
induced by the fact that the particles still falling on the 
slope transfer their kinetic energy by “pushing” the 
deposit in the transition zone, inducing the stress peak 
observed in this area. The displacement of the deposit 
ends when this transfer of kinetic energy stops, i.e. 
when there is no more flow on the slope. This 
assumption is in good agreement with the experimental 
and numerical estimation of the velocity of the 
avalanche front (Figure 6). 

 

Energy considerations 

The analysis of the modes of energy dissipation 
during the flow is a relevant investigation tool to 
determine the relative importance of each of the 
parameters of the contact law. Figure 8 depicts the 
evolution along time of the repartition of the different 
kinds of energies (potential energy, kinetic energy, 
dissipated energy) inside the system. At t=0, there is no 
motion and the system only has potential energy (in 
white in Figure 8). When the flow develops along the 
inclined plane (from t=0 to t=0.64s), the part of 
potential energy decreases and a kinetic energy (shades 
of grey in the upper part of the figure) appears, due to 
the velocity of the particles composing the flow. This 
kinetic energy may be decomposed in its components 
along the axes x, y, and z, and in rotational energy. 
Figure 8 shows that only the components along x and y 
have a significant value, and that the energies along z 
(lateral spreading of the granular mass) and in rotation 
are negligible.  

 
L 

(cm) 
R 

(cm) 
W (cm) 

H 
(cm) 

φCM (°) φap (°) 

Experiment 93 84 140 7.5 40 32 

Simulation 88.2 82.4 138.3 12.0 40.1 32.2 
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Figure 7. Interpolated fields inside the flow ; a. Velocity magnitude ; b. Angular velocity magnitude ; c. Average stress. 

 
Besides, the sum of the kinetic and potential 

energies during the flow is not equal to the initial 
potential energy because of the energy dissipations 
(shades of grey in the lower part of the figure). These 
dissipations are related to the contact law depicted in a 
previous section, and may be decomposed in four 
categories: Brick-Support frictional dissipation, Brick-
Support normal dissipation, Brick-Brick frictional 
dissipation, and Brick-Brick normal dissipation. 

After the impact of the avalanche on the horizontal 
plane, the kinetic energy reaches a peak and decreases 
until the end of the motion, at t=1.4s. Meanwhile, there is 
an increase of the total rate of energy dissipation (i.e. of 
the slope of the envelope of the total energy dissipation), 
probably because of the phenomena occurring in the 
transition zone and pointed out in the previous section. 
The dissipated energy increases until the motion stops, 
which corresponds to a dissipation of 100% of the initial 
potential energy. The proportions of the different kinds of 
energy dissipations are provided in Figure 8, and clearly 
show that, over the entire event, most of the energy is 
dissipated by friction between the support and the bricks 
(66.2%), and by friction between bricks (24.2%). The 
dissipations by normal damping are much less significant.  

The localizations of the different sources of energy 
dissipation may be found in Figure 9. To plot this figure, 
the system was divided in several horizontal slices along 
the x-axis, each slice having a width of 0.1m. The energy 
dissipations occurring in each slice were monitored during 
the simulation, and the figure provides the cumulated 
dissipated energies of each kind and in each slice during 
the entire flow. 

 

 
 
Figure 8. Evolution of the energy repartition inside the system. 

 
In the two planes of the system (i.e. everywhere except in 
the transition zone around x=0), the figure 9 clearly shows 
that the energy mostly dissipates by friction between the 
bricks and the support (around 90% of the total energy 
dissipated). On the inclined plane, the repartition of this 
dissipation is roughly uniform, and the dissipation level 
remains quite low. On the contrary, the transition zone 
between the two planes exhibits much higher levels and 
different modes of dissipation. The larger amount of 
dissipation by contacts between bricks (either by friction 
or by normal damping) might be related to the 
phenomena depicted in the previous section (Figure 7), i.e. 
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to the apparition of important rotations of the particles 
and to high stress levels because of the flow perturbation 
induced by the transition between the two planes. This 
observation probably means that the important 
proportion of Brick-Support frictional dissipation 
observed in Figure 8 is only relevant because of the perfect 
regularity of the slope, and that a granular flow on a slope 
with important roughness would probably induce a 
different repartition of the energy dissipations. 
 

 
 
Figure 9. Localisation along the x-axis of the four sources of 
energy dissipation. 

 

Conclusion 

The mechanisms of propagation of a granular mass 
were investigated using the discrete element method. The 
numerical model, calibrated from the elementary 
rebounds of a single particle, demonstrated the ability to 
describe accurately the collective movement of a granular 
flow along a slope. The model was validated from 
experimental results found in the literature and involving 
a large number of particles. This model makes possible to 
assess the position and geometry of the deposit, as well as 
the kinematics of the whole flow. It also gives access to 
several quantities (i.e. particle kinematics or energy 
dissipations) which are out-of-reach of the experimental 
devices. It was for example demonstrated that, along the 
slope, most of the energy is dissipated by basal friction 
between the bricks and the support. The velocity field 
being rather homogeneous, it induces a small number and 
intensity of the impacts inside the flow, which leads to a 
limited dissipation related to these impacts in this zone of 
the flow. On the contrary, the slope transition constitutes 
an obstacle to the flow which is therefore strongly 
perturbed. The contacts between bricks are much more 
numerous and intense, which leads to the apparition of 
energy dissipations by friction and normal damping 
between bricks. The downstream part of the flow (located 
on the horizontal plane) is slowed down by the absence of 
slope, and its motion is only triggered by the transfer of 
kinetic energy from the upstream part of the flow. For the 
complete event, the proportions of the different modes of 
energy dissipation are 66.2% by Brick-Support friction, 
24.2% by Brick-Brick friction, and respectively 8.5% and 
1.1% by Brick-Brick and Brick-Support normal damping.  

The proposed model was applied to laboratory 
experiments with simple and controlled geometric 

parameters, and must be confronted to more complicated 
topographies and block shapes. It is likely that a lack of 
regularity of the slope may considerably change the 
characteristics of the flow. The procedure of 
determination of the model parameters, which proved 
relevant for laboratory tests, has also to be tested on in-
situ block impacts. Only when this procedure is validated 
will it be possible to obtain predictive results for real 
granular flow events such as rock avalanches. 
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