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ABSTRACT 
 

The present paper makes use of a 2D limit analysis mechanism developped in 
Mollon et al. 2011 to study the influence of the scale of fluctuation of the friction 
angle in a soil mass on the critical collapse pressure of a pressurized tunnel face. The 
variability of the soil is simulated by random fields in the framework of the 
Karhunen-Loeve Expansion method, with various scales of fluctuation. A Monte-
Carlo sampling scheme is used to examine the probabilistic impact of this variability 
as well as possible emergent behaviours that may be qualitatively different from well 
known behaviours associated with homogeneous sand. Probabilistic results show that 
L/D ratio (i.e. autocorrelation length of the friction angle random field, over tunnel 
diameter D) has an important influence on the dispersion of the critical collapse 
pressure. For a small to moderate value of this scale of fluctuation with respect to the 
tunnel diameter, it appears that there are several critical positions of the failure 
mechanism, whereas such phenomenon is unlikely for large values of L/D. 

 
INTRODUCTION 
 

The estimation of the fluid pressure that has to be applied to a tunnel face to 
maintain its stability is of major interest in real tunnelling projects. This paper aims at 
investigating the impact of the scale of fluctuation of the friction angle of sands on 
the collapse of a pressurized tunnel face. This is done by using a 2D analytical 
collapse mechanism defined in the framework of the kinematical theorem of limit 
analysis. This mechanism was extensively presented and validated in homogeneous 
and heterogeneous sands in a previous study (Mollon et al. 2011), and appeared to 
provide a reasonable estimate of the critical collapse pressure and of the shape of 
failure in a spatially varying sand, at a moderate time cost. Extensive stochastic 
simulations of heterogeneous sands are used herein to evaluate the role of the scale of 
fluctuation of the soil friction angle and its impact on the face stability. 

The collapse mechanism is a rotational rigid block as shown in Fig. 1. It 
moves with a cylindrical velocity field about point O. The geometrical construction of 
this mechanism is based on a spatial discretization of a lower and an upper slip lines, 
emerging respectively from two points A and B belonging to the tunnel face. The 



failure mechanism is defined by four geometrical parameters as shown in Fig. 1a: R 
and β are related to point O (centre of rotation), and H and Rm are related to the 
position of the two points A and B. The discretization process (Fig. 1b) uses a large 
number of radial lines meeting in O (two successive lines are separated by angle δα). 
Thus, the two slip lines AE and BE are divided into a large number of small 
segments, which respect locally the normality condition related to the kinematical 
theorem (i.e. each segment of the slip lines makes an angle φ with the velocity vector, 
φ being dependant on the coordinates (x, y) of the point considered). The general 
assumptions of this mechanism and its generation are detailed in Mollon et al. [2011]. 
For each set of the four geometrical parameters, the kinematical theorem of limit 
analysis allows one to obtain a value of the collapse pressure σc. The optimal value of 
this pressure is obtained by maximization with respect to the four geometrical 
parameters. A tunnel with a diameter D=10m is adopted as an illustrative example in 
this study along with a soil unit weight equal to 18kN/m3. 
 

a.                  b.  
 

Figure 1. a. General description of the collapse mechanism; b. Discretization 
scheme 

 
SIMULATION OF RANDOM FIELDS 
 

The spatial variability of the sand is modelled here by random fields, which 
are simulated using the well known Karhunen-Loeve (KL) expansion. In this 
preliminary attempt to investigate the impact of the spatial variability of the friction 
angle on the collapse of a tunnel face, only two-dimensional lognormal fields with a 
mean μlog=30° and a standard deviation σlog=3° (i.e. a coefficient of variation of 10%) 
are used. The simulation of such a field requires an underlying normal field with a 
mean μnormal and a standard deviation σnormal which are deduced from the target mean 
and standard deviation μlog and σlog (Sudret and Der Kiureghian [2000]). An 
exponential autocorrelation function is chosen for this underlying normal field: 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−=

y

BA

x

BA

L
yy

L
xx

BA exp,ρ       (1) 

 



It can be demonstrated that, as long as the COV remains low (which is true in 
the present case), the autocorrelation function of the lognormal field is not far from 
the one of the underlying field. The detailed method of simulating the underlying 
normal field can be found elsewhere (Sudret and Der Kiureghian [2000], Phoon et al. 
[2005]). Only isotropic random fields with Lx=Ly=L are used in this study. Several 
L/D values are studied here, as well as the two limit cases L/D=0 and L/D=∞. An 
infinite autocorrelation length corresponds to a homogeneous field, and can be 
modelled by only one random variable. On the other hand, an autocorrelation length 
equal to zero corresponds to a non-correlated field, i.e. a soil in which the value of φ 
at each point is totally uncorrelated with the ones of surrounding points. Notice that 
the KL expansion is not able to generate such a field, and another approach is used 
here. The soil mass is divided into a very large number of square pixels with a size of 
1cm (i.e. D/1000 for a tunnel diameter of 10m), and each pixel is assigned a random 
value of φ respecting the lognormal distribution given previously. This process is 
believed to provide a reasonable approximation to an uncorrelated field.  
 
RESPONSE SURFACES 
 

The response surfaces obtained for some realizations of the random field 
corresponding to various L/D values are provided in Fig. 2. These surfaces are 
represented by lines of equal value of the collapse pressure σc in the plane of the two 
geometrical parameters β and R of the mechanism (note that, for this figure, a full 
face failure was considered, i.e. H=0m and Rm=5m). The solid lines denote an 
interval of 1kPa. The dotted lines denote a more refined interval of 0.2kPa. The most 
probable collapse mechanism is the one for which the value of σc is maximal. For 
homogeneous fields (L/D=∞), Fig. 2 shows that the response surface is very regular 
and that the maximum is unique. It can therefore be found very easily with a classical 
optimisation tool. In heterogeneous soils, however, the response surface is much 
more complex. In the case L/D=1, its shape is slightly modified and leads to two very 
close local maximums, which correspond to two collapse mechanisms with a quasi-
similar shape. When L/D=0.1, the response surface becomes much more distorted, 
and leads to two different maximums with very different values of the parameters β 
and R. However, one of these two maximums has a much larger value of σc and 
probably leads to the preferential failure mechanism. For the two cases L/D=1 and 
L/D=0.1, the surface remains quite smooth, and optimisation algorithms are able to 
find the global maximum without difficulty. On the contrary, the case L/D=0 shows a 
very complex response surface, with a large number of local maximums. 
Optimisation algorithms are not able to provide the exact location of the global 
maximum of such a surface, but provide a correct estimate of the maximal value of σc 
because this surface is quite flat at its top.  In other words, there are a large number of 
fairly distinctively different mechanisms (different β and R) producing very similar 
σc.  It is not possible to identify the most likely failure mechanism – it appears rather 
indeterminate. 



 
 

Figure 2. Response surfaces (in kPa) for several values of L/D 
 
 
MONTE-CARLO SAMPLING 
 

Several values of L/D ranging from 0.05 to 2 are considered, as well as the 
two limit cases L/D=0 and L/D=∞. For each case, a Monte-Carlo simulation is carried 
out using 10,000 samples. For each sample, the value of the global maximum σc is 
stored, as well as the corresponding parameters β, R, H, and Rm (except for the case 
L/D=0, for which the location of the global maximum is indeterminate as may be 
seen from Fig. 2). Moreover, when a local maximum appears, the collapse pressure 
and the corresponding parameters are stored as well. It was found that, for all the 
values of L/D and for the range of the samples examined, the parameters H and Rm of 
the global and local maximums were always equal to 0m and 5m respectively, which 
means that the spatial variability of φ in a sand is not able to trigger collapses 
involving only a part of the tunnel face. Thus, only full-face failures are considered 
here, and the only varying parameters (β and R) are those related to the position of 
point O which represents the centre of rotation of the failure mechanism. 

 



 
 

Figure 3. Positions of the global and local maximums of σc as obtained from the 
10,000 samples for various values of L/D 

 
 

The positions in the (β, R) plane of the global and local maximums as 
obtained from the different samples are plotted in Fig. 3. It clearly appears that a 
small value of L/D leads to a large cloud of maximums and thus to various collapse 
shapes. On the contrary, a large value of L/D leads to a small variability for the 
parameters β and R, and thus to a quite “standard” collapse mechanism. Notice that 
Fig. 3 also shows the critical positions of the failure mechanism for different values 
of β and R.  

Fig. 4a shows the evolution of the coefficients of variation (COV) of β, R, and 
σc with L/D. The observation of Fig. 3 concerning the variability of β and R is 
confirmed by the values of the COV of β and R given in Fig. 4a. Indeed, the COV of 
the two parameters β and R are equal to 21% and 12% respectively for a very small 
scale of fluctuation (L/D=0.05), and decrease to very small values (1% and 0.5% 
respectively) for a very large scale of fluctuation (L/D=∞). On the other hand, the 
COV of σc increases with L/D, from 4% (for L/D=0.05) to 16% (for L/D=∞). The 
simple assumption L/D=∞ is therefore conservative in terms of the variability of σc. It 
is interesting that L/D=∞ produces almost the same mechanism but exhibits a large 
variability in σc.  On the contrary, L/D=0 produces a large variety of failure 
mechanisms, but exhibits almost the same σc. At first glance, these results seem rather 



counter-intuitive. However, the fact that a smaller variability of σc was obtained for 
small L/D values may be explained as follows: for a very small autocorrelation 
distance, the zone involved by the possible failure mechanism will have average 
values of the friction angle close to the mean value of the random field because of the 
large number of high and small values of the friction angle. This leads to close values 
of the collapse pressure and thus to a smaller variability in this pressure. On the other 
hand, the fact that a great variability in β and R was obtained for a small 
autocorrelation distance may be related to the fact that several paths of the failure 
mechanism would be possible due to the quick changes in the values of the friction 
angle in this case.   

 

          
 

Figure 4. a. Influence of L/D on COV of σc, βc, and Rc; b. Influence of L/D on the 
proportion of realizations leading to several maximums 

 
 

          
 

Figure 5. Comparison between limit analysis and FLAC for two examples of 
realizations leading to multiple failures. 

 
Fig. 4b shows the impact of L/D on the proportion of samples leading to 

several maximums. For L/D=∞, this proportion is zero because homogeneous soils 
always lead to very regular response surfaces (Fig. 2). However, it appears that this 
proportion increases when L/D decreases and can reach 55% for L/D=0.05. When 
several maximums exist, the global maximum may have a much larger value of σc 



than the local one. In such a case, one can assume that the local maximum has a 
limited importance and that the global maximum is the one corresponding to the real 
failure. However, Monte-Carlo results show that 3.8% of the samples for L/D=1 leads 
to two maximums with a relative difference smaller than 1% in terms of σc. For 
L/D=0.1, this proportion reaches 18.5%. In such a case, when two maximums have 
very close values of σc, it is very difficult to discern which mechanism or a combined 
mechanism will be realized in reality. On Fig. 5, one can observe the collapse 
mechanisms obtained for two samples exhibiting such a “multiple” failure, for 
L/D=0.1. Two failure mechanisms corresponding to the two close maximums of σc 
are plotted for each sample. In order to verify the obtained failure patterns, the 
software FLAC is used to set up a numerical model (Fig. 6a). FLAC is a commercial 
program based on a lagrangian finite differences resolution scheme. The critical 
collapse pressure σc is found by a bisection method described in Mollon et al. 2011, 
and the failure pattern is obtained by applying σc-0.3kPa to the tunnel face. The 
advantage of the FLAC model when compared to the proposed limit analysis model is 
that it does not imply any assumption of the failure velocity field. It is therefore a 
convenient verification tool, despite its expensive computational cost. The failure 
patterns obtained by FLAC are provided as well in Fig. 5, and show a good 
agreement with the limit analysis results. The spatial variability of φ in sands is 
therefore able to trigger qualitatively different and more complex failure mechanisms 
involving several concurrent slip-lines, which do not appear in homogeneous soils. 
 

a.      b.  
 

Figure 6. a. Flac Model; b. Failure shapes for the two limit cases 
 
 
STUDY OF THE LIMIT CASE L/D=0 
 

When observing the response surface of the limit case L/D=0 (Fig. 2), it is 
difficult to assess if the number of maximums is very large (if one considers all the 
irregularities of the response surface as local maximums) or if there is only one 
maximum (if one considers that those irregularities are irrelevant and that the surface 
has to be smoothed). The large number of local maximums would lead to a large 
number of concurrent collapse mechanisms. On the other hand, the irregularities of 
the surface could potentially be interpreted as numerical artifacts/noises superposed to 
an “actual” smooth surface, which would lead to a single mechanism and a failure 



close to the ones observed in homogeneous soils. On Fig. 6b, one can observe the 
failure shapes obtained by the FLAC model for the two limit cases L/D=0 and 
L/D=∞. According to these results, it seems that the numerous local maximums 
observed on the response surface of the case L/D=0 are physically meaningful, since 
the failure apparently involves a large number of slip lines. Thus, FLAC and limit 
analysis results seem to be consistent. However, it could mean that both approaches 
are wrong in the sense that the approximate method of representing an uncorrelated 
field used in this study may be inadequate. In such a case, a smoothing process 
applied to the response surface may be acceptable, and the maximum may be unique. 
This would imply the existence of a “critical” autocorrelation length, for which the 
proportion of multiple failures would be maximum at an intermediate autocorrelation 
length between the two limits, L/D=0 and L/D=∞. Nevertheless, the existence of very 
small autocorrelation lengths may be academic because these scales of fluctuation are 
usually smoothed by the common geotechnical experimental laboratory or field 
devices, which deal with meso-scale samples and meso-scale averaged parameters.  
The physical interpretation of classical parameters such as the friction angle at very 
small scales is currently tenuous. These important issues are left for further studies. 

 
CONCLUSION 
 

A two-dimensional limit analysis mechanism is used in this paper to study the 
impact of the spatial variability of the friction angle of sands on the stability of a 
pressurized tunnel face. A Monte-Carlo method is used to carry out the stochastic 
simulations, and evaluate the impact of the autocorrelation length of the random field. 
It appears that the heterogeneities of the sand are not able to trigger partial failures 
(i.e. failures involving only a part of the tunnel face). A small autocorrelation length 
(with respect to the tunnel diameter) leads to a wide variety of collapse mechanisms, 
but reduces the dispersion of the critical collapse pressure. On the contrary, a large 
autocorrelation length leads to quite “standard” unique failure mechanism, but 
increases the coefficient of variation of the collapse pressure. The assumption of a 
homogeneous soil with a large autocorrelation distance is therefore conservative in 
terms of the variability of the critical collapse pressure. Moreover, it appears that 
small autocorrelation lengths are able to trigger multiple failures. This emerging 
phenomenon could not appear in homogeneous soils, and emphasises the practical 
interest of stability studies involving spatially variable soils. 
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