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Abstract
A numerical framework for the simulation of granular materials composed of mixed rigid and compliant grains is presented in
this paper. This approach is based on amultibodymeshfree technique, coupled in a very natural waywith classic concepts from
the discrete element method. The equations of motion (for the rigid grains) and of continuum mechanics (for the compliant
ones) are solved using an adaptive explicit scheme, in fully dynamic conditions. The parallelization strategy is described and
tested on an illustrative simulation involving both kinds of grains.

Keywords Granular materials · Meshfree methods · Discrete element modelling · Multibody dynamics

1 Introduction

Numerical simulation of granular materials has been the
subject of an important research effort from the scientific
community for several decades. For standard granular mate-
rials (such as sand), the most relevant tool that arose from
this effort is the discrete element method (DEM). It was first
proposed in a celebrated paper by Cundall and Strack [1] and
has been widely applied and improved ever since in order to
deal with complex [2,3] and realistic [4,5] grain shapes, grain
breakage [6], fluid coupling [7], and physico-chemical inter-
actions [8], among others. The fields of application of DEM
are very various, including geomechanics [9,10], geophysics
[11], food and health industries [12], transportation industry
[13], tribology [14,15], environmental sciences [16], physics
of condensed matter [17], etc.

The main assumption of DEM is that each grain compos-
ing the granular material behaves as a rigid solid. Thanks
to this assumption, the behaviour of a whole sample can
be predicted using simple Newtonian dynamics and phe-
nomenological contact laws (including such phenomena as
friction, damping, adhesion, etc.). These dynamics are most
often solved numerically using explicit solvers, although
impulse-based implicit solvers do exist as well [18]. For this
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assumption to be acceptable, however, the individual defor-
mation of each grain should take a negligible part into the
deformation of the whole media, and most of the kinematics
should be related to interparticle motions. This is true as long
as the applied load remains low relatively to the stiffness of
the material composing each grain.

There are several situations, however, for which this con-
dition does not apply: compaction and sintering of ductile
powders [19], biological fluids [20,21], tribological third-
bodies [22], etc. When the material composing the grains is
very compliant or the load is very high, the deformation of
each grain should be accounted for. Finite-element method
(FEM)-based approaches have been proposed [23–25], but
they remain somewhat limited by the fact that common FEM
softwares are not intended to deal with a very large num-
ber of bodies (typically more than ten thousands in DEM).
Another approach based on a multibody meshfree technique
was proposed recently [26]. It borrows fromcontinuousmod-
elling the idea of user-defined stress-strains relations (albeit
at the grain scale instead of the macroscopic one), but retains
the idea of a discrete description of the material in terms of
grains interacting by the means of contacts. In this approach,
each grain is a deformable body, and the displacement field
is interpolated on the domain of each grain using a meshfree
description based on a certain number of field nodes with
two degrees of freedom in displacement each. The classical
equations of continuum mechanics are solved using a weak
formulation as in a typical FEM code, including geomet-
ric nonlinearities and inertial terms. In the first implemented
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Fig. 1 Typical compliant and
rigid bodies

version of this method [26], contacts were accounted for in
an augmented Lagrangian framework using spline contact
elements, and the whole system was solved in time using a
composite implicit Newmark–Euler scheme. This technique
proved useful in the resolution of systems composed of a
large number of compliant bodies.

In this paper, we describe some new developments of
this numerical framework (including a different choice of
the shape functions, a new adaptive explicit solver, a dif-
ferent contact resolution, a new constitutive law, and more
complex contact laws), and we describe in which manner it
can be coupled with classical DEM in order to deal within
a single simulation with both rigid and compliant grains.
We also detail the strategy employed to parallelize the code
and demonstrate its capabilities on a complex simulation
involving both rigid and compliant grains in a tribological
framework.

2 Compliant bodies

The framework which was extensively described in [26] is
employed in the present study, with several evolutions which
are detailed in this subsection. The main principles are kept:
the code is currently limited to 2D plane-strain problems,
and each compliant body is represented by a collection of
field nodes (some of them being on the external border of
the body, and the others being in its bulk) which carry the
degrees of freedom in displacement in the same way as in
FEM (Fig. 1). Between these nodes, the continuous displace-
ment field is interpolated using meshfree shape functions. In
contrast with finite-element meshes which only provide a
very local connectivity to each node, each of these shape
functions possesses a domain of influence which typically
encompasses between 10 and 25 field nodes. In the first
implementation, radial point interpolation method (RPIM)

shape functions were used, as proposed by [27]. RPIM shape
functions are convenient because theypossess theKronecker-
delta property, but present two limitations: (i) they are not
positive everywhere (which may trigger oscillations in the
interpolated fields), and (ii) they are submitted to local loss
of continuity and differentiability at the boundaries of the
connectivity domains of the field nodes. These shortcom-
ings (shown in details in Fig. 2) have limited consequences
in linearized mechanics, but may trigger some instabilities
in the case of large displacements and deformations. For
this reason, the new version of the code employs moving
least squares (MLS) shape functions and is thus closer to the
initial version of the element-free Galerkin (EFG) method
proposed in [28] and developed in [29]. MLS shape func-
tions are positive and differentiable everywhere, but they do
not possess the Kronecker-delta property (Fig. 2). This well-
known shortcoming leads to difficulties in the application
of Dirichlet boundary conditions, but simple solutions do
exist to overcome them. While the first EFG papers did use
Lagrangemultipliers, a penaltymethod is employed here and
gives satisfaction. However, one should keep in mind that,
because of this property, the displacements u at the nodes
are not equal to the values U of the degrees of freedom at
these nodes.

In [26], a Saint Venant–Kirchhoff constitutive relation
(which states the linearity between the Green-Lagrange and
the Piola–Kirchhoff tensors)was used for the sake of simplic-
ity. It was, however, discarded in the new implementation,
because it presents a softening behaviour at large strains,
which leads to severe instabilities under some loading con-
ditions. In the present paper, a hyper-elastic neo-Hookean
model was used instead, in order to retain the elasticity of
the bodies while dealing with very large strains in a stable
manner.Dependingon the requirements of eachfieldof appli-
cation, more complex constitutive laws (e.g. visco-elastic or
elasto-plastic) may be implemented as well.
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Fig. 2 Comparison between moving least square (MLS) and radial point interpolation method (RPIM) shape functions within a given compliant
body; a MLS top and perspective views; b RPIM top and perspective views; c cross sections and detailed view showing the loss of continuity of
RPIM shape functions

Based on the choices described above, the equations of
continuum mechanics are expressed in a weak formulation,
which is discretized with respect to the degrees of freedom
of each field node. A Gaussian numerical integration per-
formed on a triangular mesh mapped on the initial positions
of the field nodes then leads to a system of ordinary differ-
ential equations, which is then solved explicitly in a manner
described in Sect. 5.

3 Rigid bodies

Along with the compliant bodies, the numerical approach
proposed in this paper is requested to deal with rigid bod-
ies. They may be used either to represent the boundaries of
the domain of the granular sample (e.g. the rigid moving
walls of a box), or to represent rigid grains interacting with

the compliant ones (Fig. 1). In any case, the dynamics of
such bodies are quite straightforward, since they only rely
on Newton’s second law of motion. Each rigid body carries
three degrees of freedom including a rotation (since the cur-
rent version of the code only deals with 2D problems), and
is characterized by a centre of mass, a mass, and a rotational
inertia. This framework is thus identical to classical DEM
implementations. Besides, each body is delimited by a col-
lection of nodes located on its external border and linked
by segments. Hence, the external frontier of a rigid grain is
identical to that of a compliant grain, and the same contact
algorithms (described in the next section) may be used. Con-
tact forces are obtained by a penalization method (along with
a user-defined contact law), and transferred to the centre of
mass for solving. Thanks to this technique, grains with arbi-
trary shapes may be introduced in simulations, in a simpler
way than in most DEM codes which require that a compli-
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cated shape be replaced by a collection of overlapping discs
[30].

4 Contacts

To account for contacts between bodies, the nodes located
on the external border of each grain (either rigid or com-
pliant) are linked by segments in order to close this border.
The domain of each body is thus delimited by a piecewise
linear frontier, which makes it possible to apply classical
penalty-based contact algorithms. Because of the possible
existence of sharp corners in the initial or deformed shapes
of the contacting grains [26], a node-to-segment formulation
is employed, based on a three-stage detection process.

The first stage is a broad proximity detection based on a
sweep-and-prune algorithm [31], which was chosen because
of its ability to deal efficiently with grains with arbitrary
shapes. The purpose of this algorithm is to define pairs of
close grains. Is considered as close any pair of grain which
overlaps both when projected on the x- and on the y-axis
(Fig. 3).

The second stage is a close proximity detection, with the
purpose of defining potential contact between any node of
the contour of a grain B and any segment of another grain A
(A and B compose one of the close pairs defined in the broad
detection stage). This is done by a set of quick geometric
tests, as shown in Fig. 4: each segment Ai Ai+1 has its own
detection zone (defined by the union of the two circles of
radius Ai Ai+1/4 and centred on Ai and Ai+1, and of the
associated rectangle of dimensions (Ai Ai+1)×(Ai Ai+1/2)),
and any point Bj entering into this zone is considered as
potentially in contact with the segment Ai Ai+1. These first

Fig. 3 Broad proximity detection stage: the only detected close pairs
are A–B (green overlaps on the x- and y-axis) and C–D (red overlaps).
(Color figure online)

Fig. 4 Close proximity detection stage: node B1 is detected as close
to segments A2A3 and A3A4, node B2 is detected as close to segment
A2A3, node A2 is detected as close to segment B2B3, and node A3 is
detected as close to segment B1B2

two stages are not performed at every time step of the solver,
but rather at a certain time-period which is user-defined in
order to reduce the computational cost while ensuring that
no contact is missed.

Conversely, the third stage is called at every time step and
consists in performing the actual contact detection (Fig. 5).
For any point Bj of a bodyBpotentially contacting a segment
Ai Ai+1 of a body A, its purpose is to determine the closest
projection ˜Bj , the signed gap γ j (negative if Bj is inside the
body A), the corresponding outward normal vector �n j , and
the tangential parameter ξ j defining the position of ˜Bj on the
segment Ai Ai+1. In order to avoid loss of detection or double
detection at the (possibly sharp) corners, a rigorous detection
box is defined for each segment Ai Ai+1. This box is defined
by the two bisecting lines arising from Ai and Ai+1, and
by two lines parallel to the segment Ai Ai+1 at a distance of
Ai Ai+1/2 in the outwards direction and Ai Ai+1/10 in the
inward direction (the lower distance in the inward direction
is designed to avoid false detection in the case of very thin
structures). This contact box allows to determine rigorously
a unique projection ˜Bj of any node Bj (either orthogonally
or towards one of the extremities of the segment) and to
compute in a univocal way the quantities �n j , γ j and ξ j which
are required in order to apply a contact law.

In all the three stages described above, there is no uni-
vocal master and slave status for contacting bodies since a
two-pass algorithm is used: each body A or B within a close
pair will successively be master and slave, as each node of A
is tested against all segments of B and each node of B against
all segments of A during the second stage. This precaution
is necessary to avoid undesired penetrations of sharp edges
(in contrast with classical FEM contacts into which sharp
corners are usually avoided by appropriate refinement and
curvature and a one-pass logic is more appropriate). Several
contact laws are implemented in the current version of the
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Fig. 5 Contact detection stage; a we suppose that nodes B1 to B6 of a
grain B were detected as close to segment A1A2 of a grain A during the
close-detection stage; b only nodes B1 to B4 are actually within the con-
tact box of this segment; c closest projections (on the segment for B1 and
B2, on the nodes for B3 and B4) allowcomputationof local contact quan-
tities (outward normal vector �n j , signed gap γ j , local coordinate ξ j )

code: frictionless, Mohr–Coulomb, cohesive, cohesive with
fatigue damage, etc. Each one of these laws will provide a
contact pressure (in contrast with the classical DEM frame-
work, which dealswith contact forces), and the actual contact
force is the product of this contact pressure by the contour
length associated with the penetrating node (i.e. the sum of
the half-lengths of the two segments which the node belongs
to). On the segment submitted to penetration, the inverse con-
tact force is shared by the two nodes based on the value of the
ξ j parameter. Finally, if bodies A and B are compliant, the
MLS-based meshfree framework requires to distribute these
forces on the nodes located in the neighbourhood of the three
nodes Ai , Ai+1, and Bj , according to the nodal values of their
respective shape functions [26].

5 Solver

An explicit solver is used to integrate in time the motion and
the deformation of each body. It is based on the following
algorithm, with a time step �t :

M−1 · tF → tÜ (1)
tU̇ + �t · tÜ → t+�tU̇ (2)
tU + �t · t+�tU̇ → t+�tU (3)
t+�tU → t+�tu (4)

In these expressions, tF is the vector of the generalized forces
applied to each degree of freedom (DOF) of the system (i.e.
one of the two translational DOF of a field node of a compli-
ant body, one of the two translational DOF of a rigid body, or
its rotational DOF) at the time t, and tU is the corresponding
degree of freedom.M−1 is the inverse of the mass matrix for
all the DOF (with a diagonal lumping for the DOF related
to the compliant bodies, as usually done in explicit solvers).
This matrix is diagonal and is computed only once at the
beginning of the simulation and stored for use at each time
step. Equation (4) is related to the computation of the actual
displacements t+�tu of each node (i.e. field nodes for compli-
ant bodies and border nodes for rigid ones) from the degrees
of freedom (i.e. DOF at field nodes for compliant bodies and
at the centre of mass for rigid ones).

This scheme is well known for being conditionally stable,
with a critical time step strongly related to the density of the
material, to its stiffness, to the distance between neighbour-
ing nodes, and to the value of the contact stiffness used in the
penaltymethod. In order to optimize the numerical efficiency
of the code, this solver is rendered adaptive by computing
at each time step an error estimator. For this purpose, the
scheme is first applied exactly in the manner described in
Eqs. (1–3), and the resulting values of the displacements
t+�tu1 are stored in memory. Then, the scheme is applied
with a time step divided by two. Displacements t+�t/2u are
thus obtained, and used to update the forces t+�t/2F. The
scheme is applied again between times t+�t/2 and t+�t, in
order to obtain a new estimation of the displacements t+�tu2.
An error estimate is then constructed as:

t+�terr = max
∣

∣

(t+�tu2 − t+�tu1
)

./d
∣

∣ (5)

In this expression, the symbol ./ corresponds to the term-
by-term division, and d is a vector containing typical nodal
distances in the neighbourhood of each node. Hence, this
error is defined as the maximum of the absolute values of the
differences between the displacements of the nodes obtained
with the time steps �t and �t/2, normalized by the local
nodal distances. This error is compared to a target value
targeterr, and the following test is performed by the algorithm
at the end of each time step:

– If t+�terr > α·targeterr, the step is rejected, and computed
again.

– Otherwise, the computation goes on.
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Fig. 6 Solver algorithm with fork-join parallelization strategy on a time step

– In both cases, the time step �t is updated using the fol-
lowing heuristic:

�t → �t · (t+�terr/targeterr
)−β

(6)

The parameters targeterr, α, and β are user-defined. Typical
values of 10−4, 2 and 0.2, respectively, seem to provide satis-
factory results. This proceduremakes it possible to accelerate
or decelerate the computation automatically depending on
the events occurring in the simulation, while ensuring that
�t remains smaller than the critical time step.

6 Parallelization strategy

Discrete element modelling is notoriously costly in terms of
computation time, and the proposed approach is even worse
because (i) the number of degrees of freedom per grain is
larger (two DOFs per field node for compliant bodies), (ii)
the number of contacts to solve is more important (contacts
are based on nodes and segments, not simply on bodies), and
(iii) the continuum equations are more demanding in terms
of elementary arithmetic operations. Hence, while typical
DEM simulations are nowadays typically restricted to about
105 grains, the proposed framework can reasonably deal with
only a few thousands compliant grains (i.e. a few hundreds
of thousands of DOFs) and even such a task cannot be rea-
sonably performed on a single processor.

The proposed framework was implemented in a C++
code called MELODY (“Multibody ELement-free Open
code for DYnamic simulations”), and parallelized in an
Open-MP (i.e. shared-memory) framework. A classical fork-
join paradigm is employed, as described in Fig. 6. For each
half-time step of the adaptive solver, four successive par-
allel stages are performed. In the first stage, time-varying

boundary conditions are updated and the contact detection
is performed. In the second stage, nodal generalized forces
related to boundary conditions, damping and contacts are
computed. The third stage is (by far) the longest one, and
consists in computing the strain-related nodal generalized
forces in compliant bodies. Finally, the fourth stage sums up
all the generalized forces applied on each node, and applies
Eqs. (1–4) in order to compute the new values of the degrees
of freedom and of the nodal displacements.

The logic of the implementation makes the parallelization
quite straightforward, since all the operations related to a
given body can be attributed to a given processor in an inde-
pendent way, without any risk of conflict in memory access.
This attribution is performed in a dynamic way (i.e. as soon
as a processor is inactive, it receives a new task related to a
given body, until all the bodies are treated). Hence, the stages
1, 2, and 4 are parallelized on a body basis. Conversely, the
stage 3 (computation of internal forces of compliant bodies)
requires a specific strategy for load-balance optimization,
because some compliant bodies may be much larger than
some other ones (for example in the case of the interaction
between a single large compliant structure and a sample of
rigid grains). Hence, this stage is parallelized on a “region”
basis: a region is either a compliant body or a part of it.
The logic is thus to divide large bodies in smaller regions
to smooth the load between the processors and optimize
the computational resources. This parallelization strategy
was tested on the computational cluster of the LaMCoS on
machineswith up to 32 processors, and led to a computational
efficiency of about 90–99%.

7 Illustrative case

In order to demonstrate the capabilities of the code, a simu-
lation involving both rigid and compliant bodies is proposed
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Fig. 7 Overview of the simulation; a zoomed view of the initial state; b general view of the initial state; c t = 1µs (end of vertical compaction);
d t = 1.5µs (beginning of shearing); e t = 6µs (shearing on half a spatial period); f t = 18.5µs (end of simulation)

in this section. It aims to represent in an idealized way the
local behaviour of a very highly loaded dry contact, as often
performed in the tribological literature. Most tribological
experiments [22] indeed reveal that, if a dry contact is suffi-
ciently loaded and mature enough, the two contacting bodies
get separated by a micrometric layer of solid matter (the so-
called third body, coming either from the degradation of the
contacting surfaces or from matter coming from outside of
the contact) which transmits the load and accommodates the
velocity jump between the two first bodies. Because of its

discontinuous character, the third body has often been mod-
elled as a granular material in a DEM framework [8,14,15].
However, in typical mechanical contacts into which the local
pressure can easily exceed 1GPa, the assumption of rigid
grains does not hold any more and the introduction of com-
pliant grains is desirable. Besides, since the contacting bodies
may not be composed of the same material, there may be a
large difference of rigidity between the third body particles
coming from each body. In that case, mixing rigid and com-
pliant grains may be interesting.
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Fig. 8 Behaviour of the adaptive solver during the simulation

In the proposed simulation, we focus on a small area
(with a length of 87µm) of the interface between two
rigid contacting bodies. Between these first bodies, a third
body composed of 2000 grains is introduced. 1000 of these
grains are rigid, and 1000 are compliant (Hyper-elastic Neo-
Hookean behaviour with E = 2GPa and ν = 0.4). All grains
have a diameter of 1µm, and interact by themeans of a purely
cohesive contact law with a cohesion of 200MPa in order
to mimic in a phenomenological way the attractive interac-
tions (e.g. van der Waals or electrostatic forces) which exist
between micrometric particles at this scale. The initial pack-
ing is shown in Fig. 7a. The lower body is fixed, and the
upper one is submitted to a vertical pressure of 1GPa and
to a horizontal velocity of 10m/s. Periodic boundary condi-
tions on the lateral boundaries allow matter getting out from
one side to reenter from the other. Overall, the simulation
contains 2002 bodies, for about 220,000 nodes and 340,000
degrees of freedom.

Five successive stages of the simulation are shown in
Fig. 7b–f, showing the shearing of the third body. The pro-
gressive mixing of the two phases exhibits some interesting
patterns: At low shear (Fig. 7d), the initial dense hexagonal
packing retains its integrity, while in a later stage (Fig. 7e) it
is progressively destroyed and replaced by a disordered state.
At very high strains (Fig. 7f), the initial packing has almost
totally disappeared and the two phases seem to be somewhat
organized in clusters of 10–20 identical grains.

During the simulation, the solver automatically adapts the
time step to the events occurring in the simulated system,
with a target error estimator of targeterr = 10−4. The evolu-
tions in time of the error estimator and of the time step are
provided in Fig. 8. This figure shows the benefit of using

Fig. 9 Normal and tangential forces on the fixed boundary of the lower
body, and corresponding friction factor

an adaptive solver, since the error estimator remains close
to its target value while the corresponding time step does
vary much more. In the first stages of the simulation (com-
pression of the third body and beginning of shearing), the
time step decreases from 3.5 × 10−6 to about 1.8 × 10−6

and then stabilizes around 2 × 10−6. But even after this sta-
bilization there are a large number of events during which
the time step suddenly decreases up to 5 × 10−7 (most crit-
ical and short events do not appear on the curves because
they were smoothed to ease the reading). Hence, it is evi-
dent that an adaptive solver is necessary in order to ensure
both the stability of the simulation and its computational effi-
ciency. The insert of Fig. 8 shows the same data on a much
more narrow time window and also exhibits the rejected
time steps (i.e. those for which the error estimator t+�terr
is larger than α · targeterr, with α = 2 in this case). Such
rejections happen about nine times every 100 steps in aver-
age in the present case, but do not happen at all in some other
cases.

Figure 9 shows some quantitative results of interest in the
field of tribology. The resulting normal force on the fixed
boundary of the lower body increases during the compres-
sion of the third body (from 0 to 1µs) and then stabilizes.
Meanwhile, The tangential force increases during the first
stages of shearing until it reaches a quite sharps peak when
the initial hexagonal packing suddenly breaks. The tangen-
tial force then decreases and reaches a stable plateau for the
rest of the simulation. The insert of Fig. 9 shows the friction
factor, defined as the ratio between the tangential and the nor-
mal forces. It appears that the friction factor first increases
up to a peak at about 0.5 (sometimes called “static friction
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Fig. 10 Location of rigid and compliant grains; a t = 1.5µs; b t = 18.5µs

Fig. 11 Velocity norm field; a t = 1.5µs; b t = 18.5µs

Fig. 12 Von Mises equivalent stress field; a t = 1.5µs; b t = 18.5µs

coefficient”), and then reaches a plateau at about 0.25 (some-
times called “dynamic friction coefficient”). These values are

very typical of those commonly encountered in tribological
experiments.
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Figures 10, 11 and 12 show zoomed views of a small area
of the third body at two stages of the simulation (i.e. at the
beginning of the shearing and at the end of the simulation).
More specifically, Fig. 10 shows the locations of the different
types of grains, from the initial hexagonal packing in Fig. 10a
(already deformed by the compression and the beginning of
the shearing) to the steady disordered state in Fig. 10b. The
organization in clusters of identical grains (i.e. rigid or com-
pliant) is evident, although the explanation of this behaviour
remains unknown and shall be investigated in further studies.
A possible explanation may be the high deformability of the
compliant grains which allow them to increase their contact
area and thus the total attractive force between them, andmay
lead them to cluster in some way. Figures 11 and 12 show
the velocity norm and equivalent Von Mises stress fields at
the same instants and demonstrate the level of detail and the
quantity of rich data that such a simulation may bring (e.g.
local velocity gradients and stress concentrations).

8 Conclusion and perspectives

The numerical framework presented in this paper allows to
combine in a same simulation a large number of rigid and
compliant bodies. A meshfree interpolation of the continu-
ous fields, a robust contact algorithm and an adaptive explicit
solver provide the code with a sufficient stability to deal with
such complex situations, while an efficient parallelization
strategy makes it possible to deal with pretty large systems.
Besides, the discretization technique makes it possible to
introduce grains with arbitrary shapes, such as those gener-
ated by Fourier–Voronoi techniques [32,33]. This will make
it possible to drive interesting studies on the influence of
the grains shapes on the macroscopic behaviour of granular
materials, either composed of rigid or compliant grains.

Although it was primarily developed for tribological pur-
poses, it is expected that this framework will find some
applications in a number of technical and scientificfields such
that geomechanics (e.g. interaction between a soil and a com-
pliant structure) or powder technologies (e.g. compaction of
mixed powders with grains of different materials). A fully
functional version of the C++ code (sources and windows
executable) as well as its matlab preprocessor is available
for free download at the URL http://guilhem.mollon.free.fr.
Although already capable of dealing with a lot of situations,
the code still has a lot of room for improvement. Next numer-
ical developments will be dedicated to the implementation of
more complex contact laws and constitutive behaviours (e.g.
viscoelasticity or elastoplasticity). A possible coupling with
XFEM would allow to study in a realistic manner the break-
age of the grains based on their stress fields. Eventually, a
3D version including fluid coupling is foreseen in order to

deal with more complex systems, both in geomechanics and
in tribology.
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