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Abstract 
This thesis work is the first part of a long-term work where we try to answer the question 

whether it is possible to set a link between the morphological aspects of the third body particles 

and the rheological parameters of the contact where they were created. Both measurements, 

morphological and rheological, are almost impossible to obtain without opening the contact 

itself. Therefore, such a link could be a game changer especially in machine monitoring and 

failure prediction, which is the final goal of this project. This work consists in a proof of 

concept. In this effort, we evaluate the efficiency of supervised machine learning algorithms in 

linking back the third body particles with the test from which they originate. In addition, we 

assess the ability of the algorithms in predicting the rheological properties of the contact from 

the morphological descriptors of the wear debris it produced.  

We choose to hold our own tribological tests using a classic pin-on-disk tribometer. We 

select the 819AW (35NCD16) steel for the first bodies in contact. To ensure the production of 

diverse third body particles, we conduct nine tests organized in three sets. One experimental 

condition (rotational speed of the disk, gaseous environment of the contact, covered distance 

by the pin during the contact) vary between the tests of a given set. During the tests, we record 

in situ signals such as the tangential force and recorded video to supervise the outlet of the 

contact. The wear debris are characterized using two different sets of data: Rheological and 

Morphological sets.  

The rheological parameters in this project are not the measurements used commonly, as they 

cannot be gathered during the experiment itself without opening the contact as mentioned 

before. The rheological data refers to six chosen descriptors calculated from the in situ signals 

that describe the flow of the third body particles. Regarding the morphological dataset, we chose 

five different descriptors to characterize the particles post mortem after the tribological tests 

were terminated. Those descriptors are calculated through image analysis algorithms of SEM 

images.  

The machine learning algorithms use first the morphological database to determine in which 

test each particle was created. We put in place two different algorithms: logistic regression and 

neural network. The algorithms have a general success rate of classification equal to almost 

40 % in predicting the test using only the five morphological descriptors of the particles. 



 

 

Investigating in depth this success rate showed the limits of this method. However, it also 

proves that the approach has an interesting potential if proper adjustments are amde to both the 

algorithms and the database. 

The next task assigned to the machine learning algorithms is to predict the rheological 

measurements from the morphological database. For that purpose, we put in place two other 

algorithms: linear and polynomial regression based. We try each time to predict a single 

rheological value from the morphological database.This method is not as successful if we adopt 

the prediction error (the absolute difference between the real value of the rheological data and 

the predicted one) as a success indicator. However, the predicted values of all the rheological 

data evolved around the averages of the real value of each one. This ‘failure’ is mainly the result 

of the variability difference between the rheological data and the morphological descriptors 

within the same test. It allows detecting the current limitations in the methodology with a great 

accuracy and it paves the way to future more accurate rheology prediction by machine learning 

algorithms.  

  



 

 

Résumé 
Ce travail de thèse est une preuve de concept. C'est la première partie d'un travail beaucoup 

plus grand où nous essayons de savoir s'il est possible d'établir un lien entre les aspects 

morphologiques des particules du troisième corps et les paramètres rhéologiques du contact où 

elles ont été créés. Les mesures rhéologiques sont difficiles à obtenir in situ sans ouvrir le 

contact et séparer les deux premiers corps. Un tel lien pourrait aider énormément l’industrie, en 

particulier dans la surveillance des machines et la prévision des défaillances, ce qui est l'objectif 

à long terme du projet auquel appartient ce travail de thèse. Dans cet effort, nous évaluons 

l'efficacité des algorithmes d'apprentissage automatique supervisé pour relier les particules du 

troisième corps aux tests d’où elles proviennent. De plus, nous évaluons la capacité des 

algorithmes à prédire les propriétés rhéologiques du contact à partir des descripteurs 

morphologiques des débris d'usure qu'il a produit. 

Nous avons choisi de mener nos propres tests tribologiques en utilisant un tribomètre 

classique pion-disque. Nous avons opté pour l'acier 819AW (35NCD16) pour les premiers 

corps en contact. Pour assurer la création de diverses particules du troisième corps avec des 

morphologies différentes, nous avons effectué neuf tests organisé en trois ensembles. Une 

condition expérimentale (Vitesse de rotation du disque, environnement gazeux du contact, 

distance parcourue par le pion lors du contact) variait entre les tests d'un ensemble. Lors des 

tests, nous avons enregistré des signaux in situ tels que la force tangentielle et enregistré des 

vidéos pour surveiller la sortie du contact. Les débris d'usure sont caractérisés à l'aide de deux 

base de données différents: une rhéologiques et une morphologiques. 

Les paramètres rhéologiques de ce projet ne correspondent pas à la définition usuelle du 

terme, car des mesures rhéologiques directes ne peuvent recueillies au cours de l'expérience 

elle-même qu’avec ouvrir le contact comme mentionné précédemment. Les données 

rhéologiques se réfèrent donc ici à six descripteurs choisis et calculée à partir des signaux in 

situ qui décrivent les débits des particules du troisième corps. Pour les données morphologiques, 

nous avons choisi cinq descripteurs différents pour caractériser les particules post mortem après 

la fin des tests tribologiques en utilisant des images microscopiques issues du MEB. Ces 

descripteurs sont calculés grâce à des algorithmes d'analyse d'images. 

Les algorithmes d'apprentissage automatique ont utilisé au premier lieu la base de données 

morphologiques pour déterminer dans quel test chaque particule a été créée. Nous avons mis 



 

 

en place deux algorithmes différents: la régression logistique et le réseau de neurones. Les 

algorithmes ont obtenu un taux de réussite globale de classification égal à près de 40% pour 

prédire le test en utilisant uniquement les cinq descripteurs morphologiques des particules. Une 

étude approfondie de ce taux de réussite a montré les limites de cette méthode. Cependant, cela 

a également prouvé que l’approche choisie présentait un potentiel intéressant si des ajustements 

mineurs étaient appliqués à la fois sur les algorithmes et la base de données. 

L’autre tâche assignée au algorithmes d'apprentissage automatique était de prédire les 

mesures rhéologiques à partir de la base de données morphologiques. Pour cela, nous avons mis 

en place deux autres algorithmes: basés sur la régression linéaire et polynomiale. Nous avons 

essayé à chaque fois à prédire une seule valeur rhéologique à partir de la base de donnée 

morphologique. Cette méthode n'a pas été aussi fructueuse que la précédente si nous adoptons 

l'erreur de prédiction (la différence absolue entre la valeur réelle des données rhéologiques et 

celle prédite) comme indicateur de succès. Cependant, les valeurs prédites de toutes les données 

rhéologiques ont évolué autour des moyennes de la valeur réelle de chacune. Cet ‘échec’ était 

principalement le résultat de la différence de variabilité entre les données rhéologiques et les 

descripteurs morphologiques au sein du même test. Il a permis de détecter les limites actuelles 

de notre approche et de déterminer avec précision les améliorations à apporter à la base de 

données afin d’atteindre des objectifs de prédiction suffisamment fiable de la rhéologie du 

troisième corps 
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1. Tribology  

Peter JOST (Jost, 1966) first introduced the appellation ‘Tribology’ in 1966 . It comes from 

the Greek root ‘Tribo’ that means ‘I rub’. Tribology is the science of friction and wear of solids 

into contact. It regroups sciences and technologies that study the different interactions between 

contacting surfaces, their causes and effects. Oxford dictionary defines tribology as ‘the science 

of interacting surfaces in relative motion’.  

Despite the name being rather new, the recorded interest in this science goes back to ancient 

times. We can trace it back to the Palaeolithic period (3.3 million years ago) where the drills 

made for digging holes or producing fire were equipped with the early edition of bearings made 

mainly from bones (Davidson, 1957). The Egyptians, around 1880 BC, were also among the 

first to use the fundamentals of tribology also (Layard, 1853). As we can see in Figure I-1 

(Dowson, 1998), the man in the red circle is applying a lubricant extracted from animal fat to 

lubricate the way and facilitate the pulling of the statue weighing almost 720 tons by the slaves.  

 

Figure I-1: Moving of an Egyptian colossus 

The use of the wheel started from 3500 BC and therefore we can assume that people back 

then were interested in reducing the friction so the movement would be more fluid. The Figure 

I-2 below shows the first attempts for the studded wheels at nearly 1338 AD.  
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Figure I-2: Drawing of two wheeled harvest cart with studded wheels. 

The world needed to wait until the 15th century and for Leonardo da Vinci to give a scientific 

approach to friction and to attempt the first experimental study for tribology. Da Vinci was the 

first to conclude that the friction force is directly proportional to the load and that it is 

independent from both the area of contact and the sliding velocity using his famous sliding 

blocks over a flat surface. However, his work did not have any influence on the history of 

tribology because it was not published. His researches and work were published by DOWSON 

(Dowson, 1998) and presented in his study of the history of tribology more than 5 centuries 

later. In the 16th century came a scientific breakthrough with Robert HOOKE who put in place 

one of the first laws in friction and Leonard EULER who analytically defined the friction and 

gave the notation 𝜇 to the friction coefficient.  

To highlight the importance of Tribology, a recent published study shows that almost 23% 

of the world’s total energy consumption is the direct result of tribological contacts (Holmberg 

and Erdemir, 2017). Also according to JOST (Jost, 1966), the gross national product of a nation 

can rise by 1% if its industry adapts better tribological methods.  

In the rest of this section, we will be explaining in more details the mechanical aspects of 

this project such as the surface and the third body approach used.  

1.1. Surface 

By definition, the surface of any volume is the set of points separating this volume from the 

environment surrounding it (Barrau, 2004). As a simpler definition, the surface is considered 

in most cases to be the exterior layer of a volume. However in reality, it is not that simple. In 
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metals, for instance, the surface is devided into 3 different layers, each chemically different 

from the other  as seen in Figure I-3 (Gatos and C., 1968; Buckley, 1978);  

- Bulk layer which is the basic structure of the metal.   

- Worked hardened layer which has a different crystaline structure from the bulk 

layer.  

- Oxides (outer layer) created from the interactions of the metal with its 

environment and from the deposition of impurites.  

In tribology, the surface we are often interested in studying is the near surface layer (a 

grouping of the oxides and the worked hardened layer) with a thickness between 10−6 𝑚𝑚 

and 10−2 𝑚𝑚. 

 

Figure I-3: Theoretical view of a theoretical surface representation. 

The second big misconseption about the surface is its flatness. We generally consider a 

‘smooth’ surface to be flat. However, when a solid is examined microscopically it is more likely 

to present several superficial irregularities . The surface may present two classes of geometrical 

errors:  

- Macroscopic errors, generally related to the manufacturing machine and visible 

to the naked eye.  

- Microscopic errors, related to operations such as grinding, cutting or blasting 

and usually only seen under the microscope.  

The topography of the surface is characterized by its roughness. The surface roughness gives 

an idea also about the real area of the contact and the pressure’s distribution during the friction 

period. In Table I-1, we present some cases of the two contacting surfaces with different states 

and we discuss the effect it has on the contact itself.   
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Table I-1: Two bodies in contact: causes and effects. 

Phenomenon Contact description Effects 

Imbrication 

 

 Resistance to the movement 

 Deformation, rupture… 

Plastic or elastic 

deformation 

 

 Change in the topography of 

both surfaces 

 Hardening of the materials 

Plastic deformation : 

Penetration 

(hardness of A > hardness of 

B) 
 

 Resistance to the movement 

 Ploughing of B by A 

Adhesion 

 

 Resistance to the movement 

When two solid bodies are in contact and relative motion under a certain normal force F, a 

tangential force T appears and opposes to the sense of the movement, as shown in Figure I-4. 

T is the friction force. On one hand, the friction is beneficial to the contact if our aim is to 

immobilize two solids with respect to each other. For example, without friction we would not 

be able to walk because it is the force keeping our feet from sliding. On the other hand, it can 

be a disadvantage if our aim is to keep the two bodies in contact moving. For instance, we 

would not want any undesirable effects on a motion ensured by a ball bearing from the contact 

of the balls with either the inner ring, the outer ring or the cage. In the example in Figure I-4 

(Brunetière, 2016), 𝑇 is the friction force, 𝐹 is the normal force that the body 2 applies on the 

body 1, 𝑉 is the sliding velocity and 𝐿 is the contact length.  
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Figure I-4: Two bodies in contact. 

A logical result of keeping two bodies in contact while each one is trying to move in the 

opposite direction is the wear of the contacting surfaces. In certain cases to limit this damage, 

a certain lubricant is introduced to the contact. For example, when using a ball bearing, it is 

common to use grease to limit the friction consequences.  

Depending on the geometries of the bodies used, the contact can be:  

- Point (sphere/sphere, sphere/plane, …) 

- Linear (cylinder/plane) 

- Surface (plane/plane) 

When we put two objects in contact, their surface roughness causes that the contact takes 

place only at the asperities that the surface presents. The sum of those spots is the so-called real 

contact surface. In the case of sliding friction, the surface is constantly changing in time. It is 

then more reasonable to think in terms of applied force than pressure. 

1.2. Third body approach  

Godet first introduced the third body approach in the 70s. This theory stresses that, apart 

from the first period in the contact’s life, two-body contacts are unfound in the industry. In most 

cases third bodies are created immediately between the contacting surfaces transforming a two-

body contact into a three-body one (Godet, 1984). It is a mechanical transposition of the 

lubrication concepts to dry friction (Denape, 2014). This concept was introduced to understand 

better the dynamics of the interfaces and to bring a better understanding of the mechanisms of 

friction and wear in general (Berthier, 1996).  
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1.2.1. Tribological triplet 

The analysis of rubbing contacts is not complete without the understanding of the 

phenomena occurring at different scales, hence the suggestion of the tribological triplet, as 

represented in Figure I-5. Adopting this concept divides the tribological problem into three 

different parts; the mechanism, the first bodies and the third body (Vincent, Berthier and 

Maurice, 1992). 

 

Figure I-5: Representation of the tribological triplet. 

1.2.1.1. Mechanical system 

The mechanical system is the structure holding the first bodies and the third body in place, 

transmitting the normal loads to the contact and setting the operating conditions. We can 

differentiate between two conditions associated to the mechanical system (Bill and C., 1982): 

the contact conditions (Normal load, vibration levels, …) and the environmental conditions 

(humidity, temperature, nature of the surrounding environment …).    

1.2.1.2. First bodies 

The first bodies are the two bodies that limit the contact. They intervene by their geometry, 

mechanical and chemical characteristics that defines how the deformation will occur that will 

create the elementary contact areas. The intervention of the materials on the contact is indirect 

because it happens via the geometry of the first bodies. However, their action is direct on the 
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elementary contact areas since their materials respond to the local tribological stress. The first 

bodies react to the applied mechanical stress with two different answers:  

- Structure change that leads to the detachment of particles ranging in size from 

a nanometre to a few micrometres.  

- Cracking.  

Any kind of coating of the surfaces in considered as a part of the first bodies. 

1.2.1.3. Third body 

Holding for a period two first bodies in contact undergoing a movement of opposite 

translation with a normal force applied on one of them results into the progressive destruction 

of the their surfaces. By definition, the third body is the intercalary element between both 

surfaces. It is considered as a new body because the physico-chemical analysis proved that its 

properties are different from those of the first bodies.  

In the case of a lubricated contact, the third body is the fluid (and all it contains) introduced 

between the surfaces. This third body is viewed as artificial. Nevertheless, in the case of dry 

contact, the observed third body turns out to be solid. It comes mainly from particles detached 

from the surfaces of the first bodies. It can have different forms such as separate particles with 

different sizes and shapes or a paste form depending on the mechanical loads applied, on the 

environment where they were created and on the nature of the first bodies. The rust and the 

particles coming from external pollution (dust, dirt …), present on the surface of the first bodies, 

are considered as parts of the third body. 

The third body particles are generally related to mechanical aspects, such as separating the 

two first bodies (Godet, 1990), transmitting the load (Lofficial and Berthier, 1987) and 

accommodating the velocity (Berthier, Vincent and Godet, 1988). However, their role is not 

limited only to that. Third body particles guarentee the thermal continuity in the contact (Ling 

and Simkins, 1963) and the layer helps contain the temperature difference in its thickness 

(Kennedy, 1984).  

Understanding the friction phenomena requires understanding the third body. The impact of 

this layer of particles in the contact has been proven at all scales. One of the most important 

discoveries in nanotribology was superlubricity in the contact of atomically arranged smooth 

surfaces (Dienwiebel et al., 2004).  However, the existence of third body particles trapped 

between the contacting surfaces cancel the superlubricity effect (Filippov et al., 2008). The 
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same result can be due to impurities between the surfaces, even at the atomic level (Müser, 

Wenning and Robbins, 2001). Admitting that the contacting surfaces change is a key element 

in solving macroscopic tribological problems. The third body layer is the essential element to 

understand the tribological properties of the combustion engine for example (Scherge, 

Shakhvorostov and Pöhlmann, 2003).  

1.2.2. Tribological circuit  

To finish the tribological investigation, it is necessary to reconstitute and evaluate the flows 

of the third body going into, through and out of the contact. Figure I-6 describes those flows 

present in the contact. The different third body flows are necessary to understand the 

relationship between the third body particles and the wear in the contact. We can find the 

following three different types of flows (Berthier, 1990): 

 The source flow 𝑄𝑠 is what fuels the contact by the destruction of the surfaces of the 

two first bodies 𝑄𝑠
𝑖𝑛𝑡 or by injecting artificial lubricant 𝑄𝑠

𝑒𝑥𝑡.  

 The external flow 𝑄𝑒 is the flow of the particles that escape the contact. We can 

distinguish between the reintroduced flow 𝑄𝑟 and the wear flow 𝑄𝑤. The difference 

between those two flows is that the reintroduced flow does not leave the contact yet the 

wear flow is made of particle that will no longer be in the contact.  

 The internal flow 𝑄𝑖 of the particles trapped between the surfaces in contact. . 

 

Figure I-6: The tribological circuit. 

This approach is used with solid third body in analogy with the fluid third bodies. It helps 

understand more the changes in friction and correlate them to the rheology and the different 

flows of the third body in the contact. As an example, if we have a ‘thick’ enough layer of third 

body, then the wear flow 𝑄𝑤 and the internal third body source flow 𝑄𝑠
𝑖𝑛𝑡 are directly correlated 
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because for every particle that gets ejected from the contact a new particle is detached from the 

first bodies to keep the balance (Fillot et al., 2004).  

1.2.3. Solid third body rheology 

Previous studies proved the importance of introducing the notion of rheology to better 

analyse the solid third body in dry contacts (Dowson, University of Leeds. Institute of 

Tribology. and Institut national des sciences appliquées de Lyon., 1996; Souchon, Renaux and 

Berthier, 1998). The rheology is the science dealing with the deformation and flow of matter, 

according to Oxford dictionary. 

As mentioned before, third body particles are found in the contact as separate particles, 

chunks of material or even in a paste form. This discontinuous state makes it impossible to 

consider the Hertzian contact stress because the load is supported by blocks of material.  

The surface of the first bodies and the third body are very sensitive to the external 

environment like the temperature and the humidity. Therefore, the nature of the solid third body 

particles is generally a result of external factors that are difficult to control.  

For those reasons and because of the lack of solid third body behaviour laws and 

experimental protocols, its rheology cannot be measured directly, but is instead evaluated. This 

assessment is based on the ‘cohesion’ and the ‘ductility’ of the third body (Descartes and 

Berthier, 2002). The term ‘cohesion’ is given by analogy with the cohesion of powder mix. 

When studying two third body samples, the one with the lower cohesion is the powdery sample 

containing different small particles. The more cohesive one tends to be a very compact sample. 

The term ‘ductility’ is chosen by analogy with the plastic flow characteristics of metals. A 

sample with low ductility means that the third body spreads little and covers a small area of the 

contact. While a sample with high ductility is a sample, where the third body spreads easily and 

covers a large part of the contact area. 

The characterization process for those two properties is the result of coupling video 

recording of the test, measurements of the friction factor and post mortem analyses of the wear. 

This part will be further explained in the following sections.  
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1.3. Wear mechanisms 

Wear is the phenomenon of material removal from a surface due to its interaction with 

another one. This event leads to mass and form loss and changes in the mechanical and chemical 

properties of the surface. It is associated to the wear flow.  

Velocity, the temperature and the time affect the evolution of wear. While some wear forms 

are progressive in time, other forms can evolve unexpectedly when certain critical values are 

reached. Usually, we try to minimize the wear due to its negative effects, but we tend to forget 

that it can also present positives aspects. As a simple example, if there was no wear, we would 

not be able to use a pencil to write. Generally, the wear of a mechanism is the result of a 

combination of events. It is rarely the result of one well-known cause.  

At the beginning of the friction process, the screen of the surface is the part that undergoes 

the thermal, mechanical and chemical effects. Then those effects get through to the core of the 

surface. In general, a surface goes through three stages during its lifetime:  

- Lapping: Rapid wear with a decreasing wear speed. 

- Normal functioning: Low and constant wear. 

- Aging: Rapid wear with an increasing wear speed. 

There are generally four wear modes agreed on: 

- Adhesive wear: When two surfaces are held in contact with each other, and 

because of the non-perfect surfaces state discussed earlier, they only touch in 

certain points. When a normal force is applied to the contact, friction and wear 

happen to those points. Adhesive wear refers to the undesired detachment and 

the transfer of wear particles from one surface in the contact to the other. 

 

Figure I-7: Adhesive wear. 

- Abrasive wear: When two surfaces with different roughness are put in contact 

and if the contact has interlocking of inclined and curved regions, ploughing 

can take place. That generates the loss of material from one surface, the one 
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with the lower roughness; this is what the ASTM (American Society for Testing 

and Materials) international defines as abrasive wear.  

 

Figure I-8: Abrasive wear. 

- Fatigue wear: This type of wear is caused after a certain number of repeated 

contacts. The progressive and localized damage takes place on one surface of 

the two in contact.  

 

Figure I-9: Fatigue wear. 

- Corrosive wear: When the contact is held in an environment containing 

corrosive liquids or gases, a certain number of reactions take place between the 

two surfaces. Corrosive wear is the material degradation from one surface or 

both in condition where both corrosion and wear mechanisms are present.  

 

Figure I-10: Corrosive wear. 

1.4. Conclusion  

As we saw in this section, contacts between two solids include a large amount of complexity 

and practitioner solving friction problems may tend to oversimplify them by focusing on a 

particular scale instead of considering the tribological triplet entirely. In an effort to ease the 
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understanding of the contact, we focus in this thesis on a thorough examination of the third 

body. Learning from the morphology of the latter and linking it to the type of wear the surfaces 

are enduring will help shorten the time of the contact investigation and maintenance. 

The linking part will be put in place with machine learning algorithms that will learn from 

past data to predict the future. This recent technology is presented in the next part of this report 

2. Machine Learning 

Machine learning is a big part of Artificial Intelligence, which is a new concept in technology 

but not necessarily to human kind. Actually, we can trace Artificial Intelligence back to Greek 

mythology with Talus (Stuart and Peter, 2005). Talus is the first ‘Humanoid’ allegedly created 

by Hephaistos, the Greek god of Technology, to protect Athens. It was described as a 

combination of living and non-living neurological interfaces. It could feel, think and above all 

learn just as humans do.  

Human cognition depends on this remarkable ability, which we take for granted most of the 

time, to extract knowledge from few examples and generalize it. Definitely, animals can 

differentiate between objects, but only humans and maybe some other mammals are able to get 

the characteristics of an object and then generalize it to know that object under any 

circumstances. Let us study how a child is taught the meaning of words. For this example, we 

will use the word ‘Horse’. Parents will provide a certain number of pictures of horses so the 

child will connect the word to those images. However, it will not stop there; the toddler will be 

able to get the characteristics of the horse and will be able to tell if a new picture is of a horse 

or not. Of course, there will be some mistakes like with pictures of Zebras, Ponies and Donkeys 

(Woodward and Needham, 2009). This ability to generalize the few information we get from a 

small number of examples is very critical, not just to understand the meaning of words, but also 

to conclude the properties of things, cause and effect relationships and many other domains 

from our daily lives. 

With the enormous number of possibilities that learning offers to humans, it comes with no 

surprise that, since machines were invented, the question of whether they could one day have 

that ability was asked. ‘The Perceptron’ was the first working machine learning algorithm 

discovered by Rosenblatt in 1958. The Perceptron learns a discriminant linear function from a 

sequence of examples described by their attributes (Rosenblatt, 1958). Certainly, the 
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discriminant analysis was discovered in 1930 but The Perceptron was the first algorithm able 

to induce a concept or a function from a sample examples. This was the turning point in machine 

learning history and the research in that field has since then made a significant progress.  

It took humanity hundreds of centuries to create the first learning algorithm. However, in 

less than half a century, we went from the Perceptron to almost infinite possibilities. Machine 

learning algorithms cover almost all domains. Machine learning can recognize a human from 

its face (Rowley, Baluja and Kanade, 1998), fingerprints (Alonso-Fernandez et al., 2009) and 

eye iris (Dobeš et al., 2004). In the transport field, we now find autonomous vehicles (Bojarski 

et al., 2016). Machine learning algorithms are capable now of finding tumours in MR images 

(Devos et al., 2007),  studying the biomedical signals and predicting the progression of a disease 

(Sejdić and Falk, 2018). Thanks to machine learning, machines are beating humans at chess 

(Feng-Hsiung Hsu, 1999), the strategy game Go (Silver et al., 2017), and at solving Rubik cubes 

where an AI machine holds the world record.  

There are two main reasons behind this recent exponential progress: 

- The technological breakthrough in hardware: To get the best results of a 

machine-learning algorithm it is crucial to have the right hardware and 

infrastructure. The highest performing computers in the beginning of the Artificial 

intelligence era were the supercomputers. However, they were only accessible to a 

small group of people due to their high cost. For example, the IBM 7030 Stretch 

supercomputer cost nearly 8 million dollars when it was created in 1961. However, 

companies now are creating special units just for Machine Learning and Artificial 

Intelligence purposes for cheap prices due to the lower cost of transistors. To 

understand the magnitude of the evolution of processors, according the Shane Legg 

(cofounder of Google DeepMind), the phase of ‘teaching’ a machine learning 

algorithm that takes one day on the newest processors nowadays, would have taken 

a quarter of a million years on the 80486 intel processor created in the nineties.  

- Data availability: As explained before, machine learning needs to learn from 

example samples. Researchers estimate that each day, we are producing two and a 

half quintillion (1018) bytes of data (106 Terabytes of data) and all this information 

is stored in a way or another. In fact IBM reports (IBM, 2016) confirm that 90% of 

the data stored has been created in the last two years.  
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In the rest of this section, the intelligent agents will be described first, followed by a 

presentation of the different models of machine learning: Supervised learning and 

Unsupervised learning. The different applications of machine learning in image analysis will 

be the last part of this section.  

2.1. Intelligent agents 

An agent is by definition anything that understands and identifies its environment using 

sensors and acts on this environment through actuators (Stuart and Peter, 2005). For example, 

a human agent has eyes, ears and other organs that act as sensors to its environment and it has 

muscles, vocal cords and other organs that are his actuators.   

 

Figure I-11: Simplified architecture of an intelligent agent. 

The agent, as described in Figure I-11, reacts with its environment following an approach 

described by a function or a strategy that associates every series of actions to a sequence of 

precepts. Once we created an agent and implemented it in its environment, we need to keep 

track of it and to judge if the agent is a ‘wise’ agent or not. In fact, when we implement an agent 

in an environment, it generates a sequence of actions depending on the sequence of stimulus it 

gets. Those reactions will make the environment experience a set of states. We consider an 

agent acceptable or wise if this set of states is preferable. Moreover, we quantify this acceptance 

by the performance measure. 
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The performance is a quantified quota that reflects the precision of the function or the 

strategy used by the agent. It can be associated to the number of times that the agent choses the 

good decision, in some simple tasks such as the classification. However and for much more 

complex jobs like the sequential decision problems, the performance must consider all the 

actions completed by the agent over the time because every one of them can have a different 

effect on the overall decision made.  

2.2. Machine Learning methods 

The right agent for a certain environment needs to be wise but also it needs to learn as much 

as possible from what it experiences. Simply, a learning agent is an agent with a performance 

rate getting better over the time, using its own experience. The initial configuration of the 

agent’s function may show some knowledge of the environment, but as the agent interacts more 

with it, its function may change and its action may be adjusted. 

The first who wanted to solve the famous question ‘Can machines think and learn?’ was 

Turing (Turing, 1950). He initially thought about programming all the possible actions and 

relating them to every percept possible. Nevertheless, he abandoned this idea quickly for three 

major reasons. First of all, the agent’s designer cannot predict the variety of situations that the 

agent might encounter. Secondly, the designer cannot know if there will be a change on the 

environment so he would not know how to anticipate the reaction to it. Finally, it is sometimes 

impossible for the designers to know how to program a task.  

During the years, there have been many methods to teach machines how to learn from their 

experiences. One of the main differences between those techniques is the feedback. The type of 

the feedback determines the learning mode. In the supervised learning, the feedback matches 

the action the agent choses to apply depending on the set of percept it received. Therefore, the 

environment becomes the supervisor of the agent that corrects its errors (Kearns and Vazirani, 

1994)  . However, in the unsupervised learning, the agent does not receive any feedback. The 

agent starts with a collection of unidentified data and it builds its own strategy to describe this 

data by detecting similarities on its own without any interference from the outside world (Xu 

and Wunsch, 2008).   
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Between those two extreme sides, we have many other modes of learning such as the Semi-

supervised learning and the Reinforcement learning that will not be implemented in this project. 

Therefore, we will skip their introduction. 

2.2.1. Supervised learning 

The basis of supervised learning is the idea of learning from examples. In this type of 

machine learning, we have two main sets of data to deal with; 𝑍 and 𝑍∗. We call 𝑍 the training 

set and 𝑍∗ the test set of respectively 𝑁 and 𝑁∗elements of input-output pairs. The supervised 

learning algorithms takes the training set 𝑍 = {(𝑥1; 𝑦1), (𝑥2; 𝑦2), … , (𝑥𝑁; 𝑦𝑁)}, where 𝑦𝑖 =

𝑓(𝑥𝑖), and discovers a resemblance function 𝒉 to predict the unknown function 𝒇. The learning 

process is a constant search for all the possible improvement we can implement to 𝒉. To judge 

the efficiency of our resemblance function, we see how well it performs on our test set 𝑍∗. The 

function 𝒉, called also the hypothesis function, is said to generalize well if it predicts 𝑦 with the 

smallest error possible for the 𝑥 in the test set.  

There are two different types of problems in the supervised learning; Classification and 

Regression. When the output set 𝑦 is a number (such as the grade of a student), the problem is 

called regression. However, the problem is called classification if the output set is a restricted 

series of values (such as for the state of a student; absent, present or expelled).  

Curve-fitting algorithms are one of the simplest examples for supervised learning 

algorithms. Suppose we have a number of outputs for an unknown mathematical function 𝑓 as 

shown with the blue circles in Figure I-12. We want to search for the best function that will try 

to fit the largest number of points we already have from the set of possible candidates.  
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Figure I-12: Curve fitting examples. 

These algorithms are categorized as supervised learning technics because they have a set of 

outputs in the training set that will send feedback about their exactitude to the agent working 

with them.  

2.2.2. Unsupervised learning 

The unsupervised learning does not require as much input data as its supervised sibling to 

start with. It uses a training set of inputs that is neither classified nor labelled and acts on it 

according to similarities and differences that the agent detects without supervision. No target 

outputs are chosen but the algorithm identifies them alone. 

A popular example of unsupervised learning algorithms is Clustering, as shown in Figure I-

13. In cluster analysis, the input set is separated into groups or ‘clusters’ based on some measure 

of similarity or shared characteristic. We find two categories of clustering; Hard clustering, 

where each input belongs to exactly one and only one cluster and Soft clustering where each 

input may belong to several clusters. 
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Figure I-13: Clustering result (left figure: raw data / right figure: division into three clusters). 

Trying to evaluate the performance of unsupervised learning algorithms is not as easy as for 

the supervised ones. Actually, in some cases it is not even possible because judging how good 

the unsupervised agent was in performing a certain task will depend mostly on why it was used 

in the first place. Nevertheless, we can try to measure the quality of the output of an 

unsupervised system. There are two types of validity indices; external indices and internal 

indices. For example, in Clustering, an external index is a quota of agreement between two 

results where the first one is from a known cluster and the second is the one we are trying to fit 

in a cluster (Dudoit and Fridlyand, 2002).So, we are judging the result of clustering algorithm 

by a known cluster. The internal index is a measure of the ‘goodness’ of a clustering algorithm 

without using any external information (Thalamuthu et al., 2006).  Therefore, we are using 

quantities and features built in the input set, such as the Silhouette index, Distance between two 

clusters index (CD), Homogeneity index, etc...   

2.3. Machine Learning for image classification 

In this project, we are trying to explore the use of machine learning algorithms for image 

classification and computer vision purposes. Whether we use supervised or unsupervised 

machine learning technic and given a set of data describing the images, a trained algorithm 

should be able to learn the different classes of images we have and infer the class of the new 

ones.  
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To solve a classification problem we need two equally important elements: the databases 

and the learning algorithm. In our study, those databases are made from a combination of 

morphological and rheological data. Those terms will be defined in the next section of this 

manuscript.   

2.3.1. Feature descriptors extraction technics  

Collecting the data necessary to teach a machine-learning algorithm is one of the most 

critical phases (Due Trier, Jain and Taxt, 1996). We find low-level descriptors interested in 

pixel-level information and higher-level descriptors requiring an intermediate representation to 

get the information (such as a texture pattern description) (Srinivasan and Shobha, 2008). Not 

to overcomplicate this part of the workload, we chose to work with high-level descriptors.  

Wear debris have been studied for a long time, mainly to correlate their morphology to the 

condition of the machinery (Davies, 1998; Davies, Prickett and Grosvenor, 1998; Price and 

Roylance, 1998; Myshkin, Markova and Andrei, 2005). According to those studies, third body 

features are divided into two main categories: qualitative and quantitative features.  

To quantify an object we talk about its ‘size’. The size of particle can be characterized by 

many figures such as the length, the width, the perimeter, the area … Those measurements are 

not easy to calculate in our case due to the complexity of the edges of the third body particles 

and the separation between the particle itself and its background as shown in the Figure I-14. 

The qualitative features are the elements that specify the ‘configuration’ of an object. And 

for third body particles 2 characteristics are pointed; the form and the proportions (Starr et al., 

2001). The form describes the similarity of a particle to a regular geometrical structure such as 

a cube or a sphere.  The proportion is the relative difference between that regular structure and 

the particle studied. 

The exact features used in this work will be specified in the following sections.  

https://www.thesaurus.com/browse/configuration
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Figure I-14: A sample of third body particles. 

2.3.2. Image classification algorithms  

First, we need to specify the labels for some of the variables that will be used by the 

algorithms. To do so, we summarize in a general manner the logic that almost every machine 

learning algorithms follow:  

1) From a set of data (𝒁) called learning database, where the input (𝑿) and the 

output (𝒀) are both known, the algorithm forms a hypothesis function 𝒉𝜽. In 

most cases, it is the weighted (𝜽) sum of the input (𝑿). However, it might 

take other forms like a polynomial function. The output of the hypothesis 

function (�̂�) is supposedly the result the operator is searching for. 

2) The algorithm calculates the ‘cost’ (𝑱) of using that set of weights (𝜽). The 

cost function quantifies the performance of the algorithm when it is applied 

on learning database (𝒁) but measuring the difference between the expected 

result (𝒀) and the computed result (�̂�). 

3) It modifies the value of the weights (𝜽) of the hypothesis function (𝒉𝜽) to 

minimize the cost function (𝑱).  

4) The classifier repeats step 2 and 3 for a certain number of time (𝑵𝑰: Number 

of Iterations). This is where we suppose the algorithm is learning.  

5) The operator tests the accuracy of the final hypothesis function of a test 

database (𝒁∗). 
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We proceed in the next section to specify the two best-known algorithms used to solve 

classification problems. Those results of those algorithms are presented in chapter 5, section 2.  

2.3.2.1. Logistic regression  

The logistic regression was developed as a statistical model in the late of the 1960s to study  

binary data  (its units take only two possible values) especially in the medical field(Cox, 1977). 

In spite of its label, logistic regression is used to solve classification problem(Hosmer and 

Lemeshow, 2000; El-Habil, 2012) such as the text classification(Nigam, Lafferty and 

McCallum, 1999) and co-reference resolution(Kehler, 1997) (Finding to which person or thing 

an expression refers to in a text). By calculating probabilities using logistic (Sigmoid) equation, 

it measures the relationship between an output class and one or more independent input 

variables. For example, it classifies a person as a female or male based on its height, weight and 

hair length.  

We can distinguish between two types of classification problems; Binary and Multiclass 

classification. 

 Binary classification 

A binary classification problem is a classification problem that has only two classes to 

choose from. In this case, the probability for an input object to belong to one class is the 

complement probability for its belonging to the other class. If we have 0.7 as the probability of 

the input belonging to class 1 then automatically its probability for belonging to class 2 is 0.3. 

Therefore, we fix a threshold (𝑇ℎ) to determine to which class our input belongs to. The binary 

classification is as follows  

{
𝑖𝑓 ℎ𝜃 ≥ 𝑇ℎ → 𝑦 = 0|1
             𝑒𝑙𝑠𝑒 → 𝑦 = 1|0

 

As mentioned earlier, the algorithm classifies based on its own probability calculation. The 

algorithm associate a set of weights (𝜃) to the set of inputs (𝑋) and calculates the classical 

weighted sum (∑ 𝜃𝑖𝑥𝑖). Each weight 𝜃𝑖 is a real number (∈ ℝ) that can indicate the importance 

of the feature 𝑥𝑖 it is associated with. The result of the weighted sum is also a real number (∈

ℝ) and therefore cannot be considered as a probability. The weighted sum passes through a 

sigmoid function that maps the real numbers to a [0, 1] interval. The sigmoid function has the 

following equation and it is plotted in Figure I-15.  
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s(z) =
1

1 + e−z
 

 

Figure I-15: Sigmoid function representation. 

Therefore, the hypothesis function for a logistic regression classifier is as follows:  

ℎ𝜃(𝑋) =  𝑠(𝜃 ∙ 𝑋) =
1

1 + 𝑒−𝜃∙𝑋
  

 𝑤𝑖𝑡ℎ 𝜃 ∙ 𝑋 = [𝜃0 𝜃1 ⋯ 𝜃𝑛] ∙ [

𝑥0

𝑥1

⋮
𝑥𝑛

] 

Once we defined the hypothesis function, we now investigate the cost function. Many 

functions can be applied such as the hinge loss function (Tang, 2013), the Cauchy-Schwarz 

divergence function (Czarnecki, Józefowicz and Tabor, 2015), etc. However, each function has 

its own effect on the learning process (Janocha and Czarnecki, 2017). Therefore, in this work, 

we use the loss function, which is the most used with in classification problems: the cross 

entropy cost function. The equation for this loss function is as follows:  

𝐽(𝜃) =  −
1

𝑚
∑ [𝑦(𝑖) 𝑙𝑜𝑔(�̂�(𝑖)) + (1 − 𝑦(𝑖)) 𝑙𝑜𝑔 ((1 − �̂�(𝑖)))]

𝑚

𝑖=1

 

𝑤𝑖𝑡ℎ: �̂�(𝑖) = ℎ𝜃(𝑥(𝑖)), 𝑚 = 𝑠𝑖𝑧𝑒(𝑍) 
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If the correct answer 𝑦(𝑖) is 0 (Class 1), the first term of the sum (𝑦(𝑖)𝑙𝑜𝑔(�̂�(𝑖))) will be null 

and the cost function will be 0 if our predicted result (�̂�(𝑖)) is 0 too. The more the calculated 

result approaches 1 (Class 2, which is the wrong result), the bigger the cost function. The same 

applies if the correct answer 𝑦(𝑖) is 1 (Class 2). This time the second term vanishes from the 

cost function, and the further from 1 the bigger the cost function.  

At the start of the learning process, the weights are randomly chosen. However, the point of 

machine learning is to get better in time, and this purpose is reached by finding the best set of 

weights 𝜃 that minimizes the cost function 𝐽(𝜃). To do so, we need an optimization algorithm. 

Many are found in literature such as Conjugate gradient algorithm, Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm, …Studying their effect on the performance of the 

machine learning algorithm shows that is depends on whether the data is highly correlated or 

not(Thomas P. Minka, 2003). We chose to work with Gradient Descent due to its good  results 

when applied on logistic regression problems(Mayooran, 2018).  

This algorithm searches for the first minimum it finds in a mathematical function. Our cost 

function 𝐽(𝜃) is a convex function since the exponential function (𝑒−𝜃𝑥) is a convex function 

and the logarithmic function of a convex function is a convex function itself.  Therefore, the 

gradient descent procedure will converge to the only minimum there is. It searches for the 

minimum by exploring in which direction the function is rising and moving in the opposite 

way.  

In Figure I-16, we schematize the Gradient Descent algorithm. The function plotted can 

simulate the loss function 𝐽(𝜃). It is plotted as a function of the set of weights 𝜃. The random 

initialisation of 𝜃 results into obtaining 𝜃1 and 𝐽1. We calculate the gradient (the slope of the 

tangent at 𝐽1) at 𝜃1. Since it is negative, the algorithm instructs us to move in the opposite 

direction, meaning that we need to increase 𝜃 and we obtain 𝜃2. The amount by which we move 

from 𝜃1 to 𝜃2 is controlled by the learning rate 𝛼. 
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Figure I-16: Gradient Descent algorithm explained. 

Mathematically, the Gradient Descent is translated as follows:  

𝑅𝑒𝑝𝑒𝑎𝑡 {𝜃𝑗 = 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃)} 

By developing the derivative, we find:  

𝑅𝑒𝑝𝑒𝑎𝑡 {𝜃𝑗 = 𝜃𝑗 − 𝛼 ∑ ((�̂�(𝑖) − 𝑦(𝑖))𝑥𝑗
(𝑖)

)

𝑚

𝑖=1

} 

This ensures that all the weights are updated at the same time. The number of times we repeat 

the optimisation process is defined during the implementation (𝑁𝐼 ∶ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠).  

 Multiclass classification  

In classification problems, we do not always have just two classes to choose from. For 

example, if we need to determine the state of a car whether it is new, used or destroyed based 

on its fuel consumption and CO2 emission, we have three different classes. This kind of 

problems is called Multiclass(Aly and Aly, 2005).  

In order to solve the problem that has 𝐶 classes, two approaches are accepted: one-vs-all and 

one-vs-one: 

- one-vs-all: we divide our problem into 𝐶 binary classification problems. In fact, the 

classifier is taking one class and then lumping all the others into a second class each 

time. We train therefore 𝐶 binary classifiers. The input takes the class that its 
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classifier associated the highest probability �̂� = max (ℎ𝜃
(𝑖)

(𝑥)), with 𝑖 ∈

{1, 2, … , 𝐶}.  

- one-vs-one: in this case, we train (
𝐶
2

) =
𝐶(𝐶−1)

2
 separate binary classifiers. The input 

needs to pass through the (
𝐶
2

) classifiers before it gets a class. This later is associated 

to the class with the highest probability. One of the drawbacks of this technic is the 

high number of classifiers needed compared with the one-vs-all technic which can 

slow down the calculations.  

For this thesis, we chose to work with one-vs-all approach to solve the multiclass 

classification.  

 Regularization: 

During the learning phase, we can have two different results:  

- Under-fitting: A hypothesis function that cannot map the training dataset. Either this 

is caused by a too simple function or too few features used to characterize each 

example. 

- Over-fitting: A hypothesis function that maps perfectly the training dataset but does 

not perform well on a test database. This problem is due to a too sophisticated 

function or the use of too many features.  

In order to fix the under-fitting problem, the developer generally opts to increase the number 

of the features used or to change the model chosen for the hypothesis function. However, to fix 

the over-fitting, the developer either reduces the number of features (manually or using a 

selection algorithm) or regulates the hypothesis function.   

In this work, we are studying the features we chose to describe the third body particles. 

Therefore, we need to keep their number unchanged, which made us opt for the regularization 

solution.  

The regularization fixes the over-fitting problem by reducing the effect of the weights 𝜃 

without changing their values. This penalisation is implemented in the cost function by adding 

a multiple of the regularization norm 𝑁(𝜃) by the regularization parameter 𝜆. This transforms 

the cost function into:  

𝐽𝑅𝑒𝑔(𝜃) = 𝐽(𝜃) + 𝜆𝑁(𝜃) 
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Many regularization models can be utilized such as the LASSO(Tibshirani, 1996), the 

RLAD(Wang, Gordon and Zhu, 2006), the Dantzig Selector(Candes and Tao, 2007) … To each 

model its effect on the learning procedure. For this study, we chose the model most common in 

classification problems: the Tikhonov regularization(Rong-En Fan et al., 2008) also known as 

the ridge regression where 𝑁(𝜃) =
1

𝑚
∑ 𝜃𝑖

2. This transforms the cost function into:  

𝐽𝑅𝑒𝑔(𝜃) = −
1
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The new regularized cost function is still a convex function since it is a sum two convex 

functions. Therefore, we keep the use of gradient descent technique in order to find the minima 

of the function.  

2.3.2.2. Artificial neural networks  

Artificial neural networks are limited simulations of the human brain. At a very basic stage, 

brain neurons are composed of three parts: the dendrites, the cell body and the axon. The 

dendrites receive the electrical stimulation that is treated by the cell body and the output is sent 

by the axon. In artificial neural networks, the feature attributes correspond to the signal that the 

dendrites receive the output corresponds to the signal the axon sends and the hypothesis 

function corresponds to the cell body. The similarities can be seen more clearly in Figure I-17.  

 

Figure I-17: Comparison between biological and artificial neurons 
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The artificial neural network (ANN) is a system of interconnected ‘neurons’. Those 

connections have weights that are adjusted during the training phase of the learning. Usually 

the network has multiple layers of interconnected neurons. Each layer responds to a different 

combination of inputs that is the output of the layer before it. The artificial neural networks take 

a different approach from that used by conventional algorithms. They do not follow a set of 

instructions. ANN corrects itself using the training dataset by modifying the weights of each 

layer. This is why data used in the ANN should be selected carefully.  

Artificial neural networks are implemented in different domains such as handwritten digits 

recognition, the diagnosis of disease conditions (Kalyan et al., 2014) and face detection 

algorithms. From the benefits of the artificial neural networks, we can cite their ability to learn 

directly from data and the more data we have the more accuracy we obtain. Nevertheless, they 

have some disadvantages. Using ANN to solve a problem will definitely provide results but it 

will not explain how those results were obtained. Thus, it is usually the last resolution scientist 

resort to for answering a problem.  

We keep the same logistic function (𝑠) as in the logistic regression. A very simplistic 

representation of the neural network can be as follows:  

𝐼𝑛𝑝𝑢𝑡 →  [ ] → 𝑂𝑢𝑡𝑝𝑢𝑡 

The Input vector goes through hidden layers that results into calculating the result of the 

algorithm. The hidden layers are matrices (made of nodes) s calculated the same way as the 

hypothesis function in the logistic regression. To explain more we showcase an example in 

Figure I-18 of an uncomplicated neurone network with one hidden layer with three nodes and 

an input that has four quantities:  

 

Figure I-18: Neural Network example. 

The value of each node of this neural network is as follows:  
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To calculate the value of the nodes 𝑎 in a layer 𝑙, we can use the following equation:  

𝑎(𝑙) = 𝑠(𝜃((𝑙−1)) × 𝑎(𝑙−1)) 

knowing 𝜃((𝑙−1)) is a matrix with the dimensions (𝑝 × 𝑘) where 𝑝 is the number of nodes at 

the layer (𝑙) and 𝑘 is the number of nodes at the layer (𝑙 − 1).  Therefore at the end of the 

network, the hypothesis function is as follows:  

ℎ𝜃(𝑋) = 𝑎(𝐿) = 𝑠(𝜃((𝐿−1)) × 𝑎(𝐿−1)) = 𝑠 (𝜃((𝐿−1)) × 𝑠 (𝜃((𝐿−2)) × 𝑠(… × 𝑠(𝜃(1) × 𝑋) … )))   

 where 𝐿 is the number of layers in the network. 

In the case of multiclass classification, the output 𝑎(𝐿) of the neural network is a matrix with 

the dimensions (1 × 𝑛), with 𝑛 being the number of classes we have.  

The regularized cost function will keep the same form as in the logistic regression with few 

differences. It is given by:  
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With :  - 𝑚: number of examples used. 

            - 𝐾: number of classes (outputs). 

            - 𝐿: number of layers in the network. 

            - 𝑠𝑙: number of nodes in layer 𝑙 

We can note in this cost function that the double sum adds up the logistic regression costs 

calculated for each cell in the output layer and the triple sum adds the squares of all the 𝜃 put 

in place in the network developed. 

During logistic regression, we were able to use gradient descent directly as our optimization 

algorithm for the weights. However, it is not the case with neural networks. In neural networks, 

except for the last layer, none of the outcome of the intermediate nodes is pre-known. To solve 

this problem, the backpropagation(Rumelhart, Hinton and Williams, 1985) technique was 

proposed. Knowing the architecture of the network and given a cost function, this method 
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calculates the gradient of the cost function with respect to the different weights in place. This 

method starts with the gradient of the last layer (the output layer) and moves ‘backward’ into 

the network calculating the gradients until it reaches the input layer. Each gradient for a layer 𝑙 

depends on the gradient from the layer 𝑙 + 1.  

2.4. Conclusion 

A general state of the art review was established to know where we stand in this new 

technology. We went through the machine learning techniques that will be used in this work. A 

detailed explanation of the constituents of the learning database will be found in the next chapter 

along with a review of studies that dealt with similar subjects. 

3. Machine Learning and Tribology 

Despite being associated with one fifth of the world’s total energy (Holmberg and Erdemir, 

2017), the subject of tribology has a moderate understanding among the overall population. 

This problem comes from its poor availability. In other words, tribology seems like a science 

for the few enlightened. At the moment, only few experts around the world have the sufficient 

knowledge to understand what is happening in the contact and to estimate its lifetime.  

The classical tribological analysis procedure did not include the quantification of wear 

debris, until it was proven that the study of those particles helps characterize and determine the 

wear mode (Stachowiak, Kirk and Stachowiak, 1991; Roylance and Raadnui, 1994a). 

Consequently, the microscopic examination of those particles was added to the tribological 

investigation.  

3.1. Third body morphological descriptors 

The examination of the third body particles started as individual characterization of the 

debris. Scientists tried to relate every shape they found to a possible source. Seven shapes have 

been proposed, only based on visual characterization, with their possible origins (Hunt, 1993; 

Surapol and BJ, 1995; Podsiadlo and Stachowiak, 1997) as shown in Table I-2. 
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Table I-2: Link between particle shapes and their origins. 

Shape observed Possible origins 

Sphere Metal fatigue 

Distorted smooth avoids Quarry dusty 

Atmosphere dust 

Chucks and slabs Metal fatigue 

Bearing petting 

Rock debris 

Platelets and flakes Running in metal wear 

Paint 

Copper in grease 

Curls, spirals and slivers Machining debris produced in high temperature 

Rolls Similar to platelets but in rolled form 

Strands and fibres Polymers, cotton and wood fibres 

Occasionally metal 

Many other researches have worked on giving metric dimensions to the feature describers 

when relating them to the wear type taking place in the contact (Roylance and Raadnui, 1994b; 

Xu, Luxmoore and Deravi, 1997; Roylance and Hunt, 1999; Roylance, Williams and Dwyer-

Joyce, 2000). For example, we find that abrasive wear may lead to particles that have a 

thickness from 2μm to 5μm and a length from 25 𝜇𝑚 to 100 µ𝑚. However, in fatigue wear, 

particles are found as spherical particles with a radius from 3 𝜇𝑚 to 10 𝜇𝑚, as a group of small 

particles with a width ranging from 10μm to 100μm or as laminar particles with a length starting 

from 20 𝜇𝑚 to 50 𝜇𝑚 (Anderson, 1982). 

This visual analysis of third body particles and the conclusions based on it are time 

consuming, subjective since they are based on an experienced opinion and not always 

consistent. To overcome these limitations and with the help of the accelerated technological 

progress we witness in computer science, tribologists resorted to automated image analysis 

algorithms to give objective feature description of the third body particles and introduced the 

numerical morphological descriptors.  

The morphological descriptors characterize the body of the particle and they outline two 

major features; the shape and the surface texture. The shape is related to the contour and the 

outline of the particle while the texture relates the smaller details on the particle. In this project, 

we will only study the shape descriptors. The numerical descriptors vary from the simplest to 

the more complex. Common parameters are the length, the equivalent circle diameter, the 
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perimeter and the area. However, we also find the more complex descriptors such as the Spike 

parameter, Form factor, Elongation, Circularity … Each descriptor gives an information about 

the morphology of the particle. Hence, we must incorporate different descriptors (Blott and Pye, 

2008) in order to get a full idea about the particle.  

One of the works that standout in this field is the work of Kowandy et al (Kowandy et al., 

2007). In fact, it has some similarities with our project such as studying the morphological 

properties of third body particles created during a tribological experiment and then relating 

those descriptors to the wear regime taking place in the contact. In their work, the chosen 

descriptors were the length, the perimeter, the area and the Spike parameter. The Spike 

parameter is an indicator for the angularity of the particle (Kaye, 1993). In order to get the 

microscopic images of the third body sample, the scientists chose to move the third body 

particles from their original place to a glass plate. The displacement of the particles may have 

caused the modification of their morphology due to their delicacy. In addition, the number of 

particles analysed was not consistent from one test to another. However, this research proved 

the efficiency of using wear debris morphology to understand the wear that takes place in the 

contact, which encouraged us to explore the effect of using descriptors that are more 

complicated. Moreover, even though the friction coefficient and the wear rate were noted during 

this research, the link between those properties and the morphological state of the third body 

particles was not directly investigated. 

3.2. Machine Learning applications in Tribology 

As more advanced technologies emerge, their application in different fields is always 

suggested. The same happened with machine learning and its capability in solving tribology 

problems. Many studies have tried to relate both fields for numerous purposes, like for example 

to optimize metal composites for a better tribological behaviour of their surfaces (Thankachan, 

Soorya Prakash and Kamarthin, 2018) and to diagnose mechanical defaults through the 

vibration signal of a machine (Meng Li, 2011). 

However, the attempts to relate the morphological descriptors of the third body to its 

rheological parameters are not as numerous. Decost (Decost and Holm, 2015) worked on 

classifying materials from their microstructural features. In this work, the classification system 

created needs to work on a big database. In addition, it uses both simulation results and 
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microscopic images of concrete third body particles. Therefore, it requires computer clusters 

that are expensive and complicated to operate.  

We can also find a research that aimed to diagnose the state of the mechanical contacts from 

the third body’s morphological state (Laghari, Memon and Khuwaja, 2007). A hardware tool 

called Leica Quantimet Q500MC was used during this work. It is an easy-to-use image analyser 

system. It has a built in camera to shoot the third body sample and a software for the image 

processing procedure. This program dictates the morphological properties of the detected 

particles. In addition, the classification put in place did not take into consideration the 

rheological properties of the whereabouts of the creation of the third body.  

4. Conclusion  

The typical tribological analysis follows a two-phased approach: (1) a large-scale 

observation of the mechanical measurements of the system (in situ), and (2) close microscopic 

observations of the contact’s surface and its boundaries after the test (post mortem). The in situ 

measurements may consist in recordings of the evolution of the coefficient of friction in time 

and/or the monitoring of the contact with high-speed camera to observe the behaviour of the 

third body particles (rheological data). However, the post mortem part typically consists in a 

qualitative judgement of the overall characteristics of the wear debris.  Those ‘measurements’ 

may be highly biased and time consuming since their acquisition requires individual 

examination by a tribology expert.  

With the aim of improving the analysis procedure and with the study of the third body 

particles created being a promising route, the improvements suggested in this field varied. The 

research was divided into either working on producing more morphological descriptors (more 

than 200 features (Wang and Wang, 2013) have been defined) and then choosing only the most 

efficient depending on the study case (Wang and Wang, 2013) or optimizing the image analysis 

algorithms themselves for a more precise results (F. Li, C. Xu, G.-Q. Ren, 2005; Liu et al., 

2016). However, some other measurements describing the tribological test were ignored, such 

as the rheological data.  

The aim of this thesis is to evaluate the efficiency of linking the morphological data that 

describes the third body particles with its rheological measurement collected during the 

tribological experiment in order to be able to understand and predict the wear. The 
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morphological descriptors are quantitative measurements of the third body particles obtained 

by digitally analysing microscopic images of the debris found on the first bodies.   

Instead of collecting data from previous experiments, we opted for a methodology where we 

conduct our own experiments. The main intention behind conducting our tribological tests is 

the production of an important quantity of third body particles in different controlled conditions. 

The amount of the particles is critical to obtain accurate morphological descriptors. Modifying 

the test conditions will result in a variety of morphological and rheological data. Possessing 

those two parameters for different tests under different conditions will create a rich database 

needed for the last part of this project, which consists in using machine-learning algorithms to 

link the two classes of properties. Classical steps of training and validation on separate subsets 

of the database are performed, and the success ratio in the validation phase is the indicator used 

to optimize machine-learning parameters. The chosen algorithm is expected to put in place a 

link between the rheological and morphological measurements and therefore to be able to 

predict one property from the other. 
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II. Experimental methodology  
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In this project, we do not seek to recreate a particular industrial contact but to investigate a 

concept. To do so, we carry out our own tribological tests to have control on the majority of the 

parameters. Thus, a tribological test bench has been set up. The bench consists of mainly two 

components: the tribometer and the measurement chain. The tribometer holds the different 

mechanical parts to ensure the ability to carry out the tribological tests. The measurement chain 

provides the necessary signals to monitor the tests and to study their different results.   

We aim to study the morphological state of the third body particles and its rheological 

measurements and check the possibility of relating those two properties. To achieve this aim, 

we need a varied database of the two classes of properties. Therefore, tests under different 

condition are performed. It allows modifying the morphological and rheological states of the 

results. In addition, the material used for the first bodies and the contact conditions must 

generate an important amount of debris in order to get a sufficient number of morphological 

descriptors values.  

1. Test bench 

1.1. Tribometer  

The tribological tests are carried out on a pin-on-disk tribometer previously assembled, 

shown in Figure II-1. This tribometer was improved during this thesis. We upgraded the 

tangential force measurement and installed new equipment to meet our needs (gas box, cameras, 

lightings …). Those changes are detailed later in this document. We study the sliding of the pin 

on a given track of the disk at a relatively low linear speed. The tribometer consists of an arm 

holding the pin in contact with the disk’s surface, a motor to keep the disk in a continuous 

rotational movement and a force sensor to follow the tangential force sensor mounted on the 

supporting arm. The sensor sends its signal to an acquisition system (OROS35) to analyse it. 

OROS program presents the results as graphs of the coefficient of friction (COF) versus time 

and records those values.  

The counterweights (8) are used to oppose to the weight (1) of the pin (6), its supporting 

arms and the different component on the arm itself (force sensor, fixing screws …). When 

applying 0 𝑁, the system is in a state of equilibrium and the normal force detected at the tip of 

the pin is very close to zero.    
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1: Normal load weights 2:   Table 

3: Disk supporting axis 4:   Disk 

5: Tangential force sensor 6:   Pin 

7: Support arm for the pin 8:   Counterweights 

9: Motor 10: Serpentine belt 

Figure II-1: Presentation of the pin disk tribometer. 

Once the pin is secured on its supporting arm, this arm keeps two rotational degree of 

freedom. We use as a reference the axis system in Figure II-1 (top right corner). The pin’s 

supporting arm can rotate around the Z-axis so that the pin can go up and down. It is only 

stopped by the disk’s surface. In addition, the arm has approximately ±2° of rotational freedom 

angle to turn around the Y-axis.  

1.1.1. Materials  

We chose the 35𝑁𝐶𝐷16 steel (35𝑁𝑖𝐶𝑟𝑀𝑜16 steel according to the DIN). It is a low-carbon 

alloy steel. This material is highly used in the manufacturing of highly stressed parts regardless 

of their dimensions across different industrial fields thanks to its high hardenability and 

important impact strength level.  The chemical composition given by the supplier of this 

material and its mechanical properties are presented in Table II-1 and Table II-2 respectively.  

Table II-1: Chemical composition of the 35NCD16 steel (percentage of  the mass content). 

C Mn Si Ni Cr Mo S Fe 

0,32 - 0,39 0,50 - 0,80 0,10 - 0,40 3,60 - 4,10 1,60 - 2,00 0,25 - 0,45 ≤ 0,025 Balance 
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Table II-2: Mechanical properties of the 35NCD16 steel. 

E ν Rp0,2%(MPa) Rm (MPa) Hardness 

205 000 0,3 1400 1870 ≈50 HRC 

1.1.2. First bodies  

The dimensions of both the pin and the disk are imposed by the tribometer. The disk, 

presented in Figure II-2, has a 109 mm diameter and a 10 mm height. Whereas the pin 

displayed in Figure II-3 is also a cylinder that has a 5 mm of radius and a 25 mm height. The 

pin has a hemisphere-like tip that measures 5 mm of radius. Both the pin and the disk have a 

surface roughness equal to 𝑅𝑎 = 0.2.  

 

Figure II-2: Design drawing of the disk. 

 

Figure II-3: Design drawing of the pin. 

A private company covered the production of the pins and disks. The manufacturer offers 

two different states for the same roughness: a linear pattern (Figure II-4.a) and a circular 

pattern (Figure II-4.b). The linear pattern causes the reflected light to blind the camera every 
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half a lap. Therefore, we opt to use the circular pattern. In Figure II-5, we present a table that 

contains the results of analysing the surface using a profilometer. Those parameters are 

calculated following the red line that is visible in the figure.  

 

Figure II-4: the two surface states (taken near the centre of the disk to accentuate the surface) provided visualised using an 

optical microscope. 

For each test, we use a new pin. Before the test, the surfaces of both the pin and disk are 

cleaned to remove any oil-like residue or particles resulting from the manufacturing process or 

the handling practices that may have an effect on the sliding test. The cleaning method consists 

of a set of steps:  

- Remove the big apparent particles on the surface using a soft brush.  

- Wash with water and dry immediately to avoid rust.  

- Clean the surface wish Acetone. 

- Put in an ultra-sonic cleaner for 10 minutes in a container submerging the piece in 

Acetone.  

- Dry immediately.  

- Clean the surface with Ethanol. 

- Put in an ultra-sonic cleaner for 10 minutes in a container submerging the piece in 

Ethanol. 

- Dry immediately. 



Page | 40 

 

 

Figure II-5: The disk's surface state. 

1.2. Measurements 

1.2.1. Forces 

The recordings of the tangential force are critical for this study. They are essential to study 

the friction phenomena since we can deduce directly the friction factor values from 

it (𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝐹𝑜𝑟𝑐𝑒

𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑐𝑒
).. Consequently, it is important not only to choose wisely 

the parameters of the sensor but also to store the tangential force values during the test since it 

is not a constant during the test. The tangential force is transmitted to the force sensor via a 

mechanical joint. Since the sensor is mounted directly above the pin, there is no need to convert 

its signal. The sensor used is the SIKA FTCA50. It is a S-type sensor that can measure 

compression and tension. Its measuring ranges from 1 to 50 𝑁. However, we cannot exceed 

20 𝑁 in our case, which is the limit of the signal conditioner used.   

There are two ways to analyse the signal. On one hand, we plot the entire signal, in 1D or 

2D, so we can study its entire evolution is time that can give us an idea about micro (momentary) 

events as shown in Figure II-6.A.. On the other hand, we can plot the average of the signal per 

lap as shown in Figure II-6.B, which is the most common way found in literature. This 

highlights the general evolution of the friction coefficient.  

Before using a sensor, it needs to be calibrated. This process consists in applying a set of 

known loads and analysing the response of the sensor. We systematically obtained a linear 

response. Still, the sensor’s results did not have an excellent repeatability when repeating the 

calibration process in the same controllable conditions. The repeatability of the results was 

judged by calculating the standard deviation (SD) between five fitting equations of five 

different tests. The SD is equal to 2 % and the highest difference between the slopes of the 
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equations was equal to 13 %. This error comes mainly from how the sensor is installed in the 

tribometer. The sensor is fixed with two arms. The rod ends of those arms allows the sensor to 

keep only the ability of rotating around itself. This degree of freedom has an impact on the 

sensor’s response. Since we can neither fix the tilt degree of the sensor nor perfectly reproduce 

it from one test to another, we chose to recalibrate it each time after fixing it before the test and 

we recheck the recalibration after each test was finished.  

 

Figure II-6: A) The instantaneous evolution of the friction coefficient. B) The average of the friction coefficient per lap. 

The calibration method is as follows: 

- The sensor is fixed on the supporting arm of the pin. This arm is lowered as if the 

test was to be conducted. However, using a set of blocks, the pin is kept a few 

millimetres away from the disk.  

- A set of calibrated masses is used. The calibration load is applied using a string that 

is attached to the pin at its other end (a wheel is used to change the direction of the 

force from vertical to horizontal). We start with 100 𝑔 and adding weights until we 

reach 600 𝑔. Then we remove the masses in the reverse order to check the 

reversibility of the measurements.  

- The string and the wheel are then removed from the bench and the arm is fully 

lowered so the pin touches the surface of the disk. If the arm is risen again, the 

calibration method needs to be run again.    
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1.2.2. Accelerometer  

The accelerometer is a sensor that sends three different signals surveying the vibration levels 

of three axis of the objects it is attached to. The three signals are read through OROS just like 

the tangential force signal. The sensor is placed directly on the pin in our tests as shown in 

Figure II-7, as well as the three axis that it follows. 

 

1: Disk 2:   Accelerometer 

3: Pin 4:   Support arm for the pin 

Figure II-7: Accelerometer placement and corresponding system of axes. 

The accelerometer’s signals will be used in our case to attempt to explain the different events 

we record in the friction factor graphs. For example, if we record a peak in the friction factor 

signal and a change in the signal from the 𝑧 axis and a change in the signal from the 𝑦 axis at 

the same time, we can assume that a large third body particle passed in the contact, which led 

to sudden pull (𝑦 axis) and rise (𝑧 axis) of the pin. This will be further detailed in the next 

chapter. 

1.3. Gas box 

It was proven that interactions take place between the materials in contact and the 

environment of the experiment. In fact, many studies confirm that many chemical reactions due 

to gas consumption can change the way materials behave when submitted to tribological 

loadings (Gouider et al., 2004; Kasem et al., 2007; Colas, 2013). Therefore, the environment is 

considered as an additional variable to be changed to vary the morphological measurements 

and the rheological data.  
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Due to the location of the pin and the disk, it is impossible to change the gaseous environment 

of the contact without covering the entire top part of the tribometer (the supporting arm for the 

pin, the weights for applying the normal load, force sensor and the counterweights as shown in 

Figure II-1). The designed solution is a cube to cover those parts. It is made of Plexiglas, to 

maintain the possibility of filming the contact with the cameras being out. The sketch of the 

cube with its different dimensions is shown in Figure II-8.      

 

Figure II-8: Sketch of the gas cabin. 

The original design of the tribometer did not take into consideration the possibility of adding 

the gas box as a feature, hence the lack of fixation mechanism. In order to avoid heavy changes 

in the tribometer, the box is fixed on the table using insulation tape. Therefore, certain leaks are 

bound to be present. To correct this phenomenon, a low gas flow is let in during the test to 

compensate for the loss.  

The two valves are on opposite sides of the box and have different heights. Each one of them 

can be used as inlet or outlet depending on the gas used. For example, if the gas chosen is lighter 

than air, then we chose the higher valve as the inlet and the lower one as outlet. To fill the box 

at first, we close the outlet valve and let a flow of the gas get inside the chamber until the 
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pressure inside is higher than the pressure outside. When opening the outlet valve, the air (the 

lower gas) will go out first. For gases more dense than air, we switch the two valves. 

2. Image acquisition  

2.1. In situ monitoring  

The utility of using in situ real time visualisation of the tribological test has been proven in 

the observation and the quantification of the wear debris (Sliney, 1978; Scharf and Singer, 2003; 

Wahl, Chromik and Lee, 2008), especially with cameras evolving and their specifications 

getting better. Primarily, those recordings help us deduce the rheological properties of the third 

body particles, which are the ductility and the cohesion of those particles (Descartes and 

Berthier, 2002). In addition, the in situ recordings can help explain the micro events we can 

find in the COF figures since they follow the contact in real time.  

The test bench is equipped with two high-speed cameras (GO 5000). This model was chosen 

after a comparison between different cameras (GoPro 4, Phantom V710, RS pro x10) and it had 

the best results for our needs. The camera’s specifications are presented in Table II-3. 

Table II-3: Camera specifications. 

Sensor CMOS 

Resolution 2560 (𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙) ∗ 2048 (𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙) 

Pixel size 5 µ𝑚 

Frame rate Up to 62 𝑓𝑝𝑠 

The cameras are equipped with a 35 mm lens and a variety of extension tubes to enhance 

the focal distance to get the best recordings possible. Additional light sources are important in 

order to reduce the exposure time and to pick up sharp details of the object. The lightings 

mounted are two XL2150 from Spectrum Illumination. They are ultra-high power LEDs 

producing 559 𝑙𝑚 per LED of pure white light. The lights can be moved and their angle can be 

changed to ensure that the coverage area is the same as the contact area.  

The cameras can be placed to follow different spots with the help of their supporting fixing 

arms. We can follow the inlet of the contact, the outlet, the sliding track (away from the contact) 

and we can follow the contact perpendicularly in the case of using a transparent first body. 
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During our tribological test, we chose to supervise only the outlet of the contact between the 

pin and the disk in order to follow the behaviour of the third body particles.  

2.2. Post-mortem observation  

At the end of each tribological test, the two first bodies are separated and dismounted from 

the tribometer. Both the sliding track on the disk and the contact zone on the tip of the pin are 

observed through a scanning electron microscope (FEI Quanta600), shown in Figure II-9. We 

chose not to move the third body particles from the surfaces where they laid during their 

creation in order not to affect their form in any way. We need to be aware that only the act of 

opening the contact between the pin and disk, even though necessary to go through studying of 

the results of the sliding test, adds a number of errors to the analysis.  

 

Figure II-9: Scanning electron microscope. 

The Scanning electron microscope (SEM) applies a focused electron beam on the sample we 

want to investigate microscopically. Depending on the specimen’s properties and the electron 

beam energy, a number of signals are emitted back from the sample, such as the Auger 

electrons, the Secondary electrons, the Backscattered electrons … Mainly, we only use the 

Secondary and the Backscattered electrons.  

 The Secondary electrons (SE): When the atoms of the sample have enough energy 

from the electron beam, secondary electrons are created. However, due to the small 

energy of the SE, only the surface’s SE stay significant enough to be detected. 
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Therefore, this method is used primarily to describe the morphology of the sample’s 

surface. The SE are sensible also to the angle between the surface and the electron 

beam: the energy of the SE get larger when that angle deviates from 90°. This is 

called the edge effect. The brighter the spots on the image are the more width they 

have and the darker the parts are the flatter they actually are.  

 The Backscattered electrons (BSE): The backscattered electrons are the electrons 

reflected back from the samples. They have higher energy levels. Thus, they 

describe deeper regions of the sample than its surface. The BSE are susceptible to 

the edge effect also. Therefore, they describe the topography of the sample in more 

details than the SE. However, they are very sensitive to the chemical composition 

of the sample used. Therefore, the resulting image can also describe its chemical 

composition (Z-contrast). The resulting image will not give in details the different 

chemical elements that make the sample or present on its surface but it can indicate 

that there are different element present depending on the brightness levels.  

In Figure 10, we present three images of the same sample: SE (Figure 10.a), BSE (Figure 

10.b) and Z-contrast image (Figure 10.c). We can see that the information from the SE and 

BSE image are different. The BSE image emphasis more on the rough edges of the surface 

when the SE is more of what is expected to see by the naked eye at that scale. The Z-contrast 

shows different brightness levels, which indicate the presence of different chemical elements. 

To investigate those elements more, we can use the EDX sensor attached to the SEM that sends 

back a report with detailed information about its chemical composition.  

 

Figure II-10: The three imaging options from the SEM: a) SE image. b) BSE image. c) Z-contrast image. 

In this project, we use the SEM primarily to investigate the morphology of the third body 

particles. Therefore, the microscopic images need to cover the totality of the contact area on the 

pin and the sliding track on the disk to gather the majority of the wear debris particles created 

during the tribological test.  
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The microscopic images will be analysed thoroughly to extract all the information they offer. 

Thus, we opt to collect images with the best resolution possible while still keeping a reasonable 

scanning time. Not only the SEM’s configurable image properties are considered, but also the 

file formats when saving the images were appropriately selected.    

3. Test conditions 

As expressed earlier in this chapter, both the morphological and rheological data of the test 

need to vary. To ensure it, we chose to work under varying test conditions. The test bench 

allows us to change the following parameters: the linear speed of the disk, the normal load and 

the gaseous environment.  

3.1. Applied normal force  

The normal load is applied using the weights stacked on their placement on the pin’s 

supporting arm (Figure II-1). The distance between the masses and the pin is a constant that 

we cannot control due to the tribometer design. Therefore, in order to have normal loads that 

are for example a set of multiples of five, we need a very specific set of masses. We chose to 

keep the applied force a constant at 10 𝑁, which means applying a weight of 600 𝑔, in order 

not to surpass the tangential force sensor limits. The shape of the first bodies and the normal 

load ensure a point contact in the initial state of the experiment with an initial Hertzian 

maximum pressure equal to 977 MPa at the contact point. The initial average Hertzian pressure 

in the contact point is equal to 651 MPa. 

3.2. Sliding speed 

The linear speed depends on both the rotational velocity and the radius of the track used on 

the disk: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑝𝑒𝑒𝑑 = 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 ∗ 𝑅𝑎𝑑𝑖𝑢𝑠 ∗ 2𝜋. The command box of the motor 

controls the rotational speed. Theoretically, it can vary between 0 and 50 laps per minute, with 

a 0.1 lap per minute increments.  However, the disk is not mounted directly on the motor’s shaft 

but it is fixed on a separate rod connected through a belt to ensure the rotational movement. We 

notice while using the motor that the moment created by a command velocity under 2.5 laps 
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per minute will not suffice to move the disk. In addition, if the rotational velocity is superior to 

15 laps per minute, significant vibrations are noticed. Those vibrations come from the motor 

itself and the movement of the transmission belt. We fix the rotational speed value to be in the 

range [3, 10 𝑟𝑝𝑚]. The linear speed can still have a wider range since it depends also on the 

radius of the sliding track itself along with the rotational speed.  

3.3. Additional properties  

Due to the difference between the radius of the disk and the radius of the pin (10 times 

bigger) and since the supporting arm of the pin can move forward and backward, we chose to 

partition the surface of the disk into 5 different sections so we can conduct 5 independent tests 

per disk. The disk theoretical division follows Figure II-10. 

 

Figure II-11: The division of the disk's surface to accommodate five sliding traces. 

The gaseous environment is changed with the help of the container designed for the 

tribometer. The gas chosen for this project are air and argon. The latter is wildly used with low-

alloyed steel, especially in welding applications. As explained earlier, a low gas flow is 

maintained through the test to compensate for the leaks. The advantage of working with argon 

is that it is heavier than air so the contact is guaranteed to be immersed in the gas since it is at 

the bottom of the cabin. The inlet valve (lower valve) of the gas is a few millimetres under the 

contact between the pin and disk, so that we ensure the presence of the gas in the contact but 
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do not disturb the created particles by any gas flow. We compute the flow to be equal to 𝑄 =

8.4 ∗ 10(−3) 𝑚3. 𝑠(−1) and that we need 10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 to fill the gas tank. 

Accordingly, we close the outlet valve for around 10 𝑠. Then we open the outlet valve and 

so the air goes out. We keep the flow of the argon the same for 10 more seconds to be sure that 

all the air went out. Afterwards we close the outlet valve and lower the pressure of the Argon 

container to 0.02 𝑏𝑎𝑟𝑠 in order to correct the leaks that take place inside the box. 

The temperature and humidity are not imposed in this project but they are recorded during 

each test. Keeping record of both those parameters may help to explain the differences between 

the results between the tests. The two properties are noted from a phone application that uses 

its sensors. The maximum error induced from the sensors is 10 %, according to the application 

description.  

In this work, we conducted nine different tests to compare the effect of changing the different 

controllable conditions on the morphological and rheological measurements. Table II-4 recaps 

the different test carried out: 

- Set 1: {Test 1, Test 2, Test 3}: Different linear speeds.  

- Set 2: {Test 4, Test 5, Test 6}: Different Gaseous environments.  

- Set 3: {Test 7, Test 8, Test 9}: Different covered distances. 

Table II-4: Experimental conditions' summary. 

Set Tag 
Radius 

(m) 

Normal 

force 

(N) 

Linear 

speed 

(m/s) 

Temperature 

(°C) 

Humidity 

(%) 

Gaseous 

environment 

Covered 

distance 

(m) 

Set1 

Test 1 0,02 

10 𝑁 

𝟎, 𝟕𝟓𝟑𝟔 22 51 
Air 

≅ 25 

Test 2 0,015 𝟎, 𝟓𝟔𝟓𝟐 20,3° 48,90 ≅ 24 

Test 3 0,01 𝟎, 𝟑𝟕𝟔𝟖 23 50 ≅ 25 

Set 2 

Test 4 0,02 0,628 21,8 43,7 Air ≅ 18 

Test 5 0,02 0,628 20 50 Argon ≅ 15 

Test 6 0,02 0,628 23 50 Argon ≅ 17 

Set 3 

Test 7 0,01 0,3768 27° 42 
Air 

≅ 𝟐𝟓 

Test 8 0,01 0,3768 23,4° 49 ≅ 𝟐𝟐 

Test 9 0,01 0,3768 21° 51 ≅ 𝟏𝟓 
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4. Conclusion  

In this chapter, we detailed the project’s strategy where we explained the aim and the 

contribution of this work in the tribological analysis approach. We introduced the material used 

for the first bodies with its different mechanical and chemical properties. We then described 

then the tribological bench with its components and their utilities. We explained the different 

visualisation methods used for observing the sliding track and the third body particles on the 

first bodies. Finally, we summarized the test conditions and listed the nine different tests, which 

results will be analysed in a following chapter 

In the rest of this manuscript, we analyse the results of the tests conducted. We describe the 

approach used to form the rheological database (Chapter 3) and the morphological database 

(Chapter 4). Finally, we present the machine learning algorithms (Chapter 5) developed and 

investigate their predictive ability.  
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III. Rheological data 
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Two types of information, that are necessary to build the database needed for the machine 

learning algorithms, are extracted from the tests conducted in this project. In this chapter, we 

detail the first type of information, namely the rheological data. As explained in the first chapter, 

rheology is the science of the flow and the deformation of materials, the third body in our case. 

A direct measurement of its rheological properties would require the use of a rheometer. 

However, this is not possible since the third-body cannot be extracted from the contact without 

significant disturbance. Besides, its properties change depending on many factors such as the 

loading conditions, the environment, and the internal structure of the first body materials. We 

must thus rely on indirect measurements. 

In this project, we chose a number of parameters that describe the third body created and the 

state of the first bodies after the test is conducted. Even though, they are not commonly agreed 

upon, they will suffice for our need especially since the aim of this work is to be a proof of 

concept for the machine learning and its ability to establish a link between the rheological data 

and the morphological descriptors for the third body particles created during each test. 

This chapter can be divided into two sections. In the first section, we detail the analysis 

protocol to obtain the rheological measurements from a single test. We detail the computations 

for every rheological parameter for this test. The second part is where we present the rheological 

dataset for all the tests from each set.  

We summarize the different tests and their experimental parameters in Table III-1. In set 1 

we changed the rotational speed of the disk. We varied the gaseous environment where the 

contact takes place between ambient air and argon between the tests grouped in set 2. We 

changed the sliding distance of the tests in set 3. 

Table III-1: Experimental conditions' summary. 

Set Tag 
Normal 

force (N) 

Linear 

speed (m/s) 

Temperature 

(°C) 

Humidity 

(%) 

Gaseous 

environment 

Distance 
covered 

(m) 

Set1 

Test 1 

10 𝑁 

𝟎, 𝟕𝟓 22 51 
Air 

≅ 25 

Test 2 𝟎, 𝟓𝟕 20 49 ≅ 24 

Test 3 𝟎, 𝟑𝟖 23 50 ≅ 25 

Set 2 

Test 4 0,63 22 44 Air ≅ 18 

Test 5 0,63 20 50 Argon ≅ 15 

Test 6 0,63 23 50 Argon ≅ 17 

Set 3 

Test 7 0,38 27 42 
Air 

≅ 𝟐𝟓 

Test 8 0,38 23 49 ≅ 𝟐𝟐 

Test 9 0,38 21 51 ≅ 𝟏𝟓 
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1. Analysis protocol  

The analysis protocol is a standardized procedure that allows us to obtain the rheological 

data from the information gathered during and after the tribological tests. The outputs of the 

tests are divided into two types; the dynamic data and the post-mortem visualisation. The 

dynamic data is the ensemble of signals (the tangential force and the three vibration levels) 

recorded during the sliding test along with the in-situ video recordings of the contact outlet. 

The post-mortem visualisations are the microscopic views of the contact area on the pin and the 

sliding track on the disk. From each type of data, we calculate a number of descriptors that form 

the rheological database. 

1.1. Dynamic results 

1.1.1. Friction factor curves 

Figure III-1 displays the evolution in the total travelled distance of the average per lap of 

the Coefficient of Friction (COF) for test 5. The first observation we can state is that the COF 

keeps varying during the test and does not keep a constant value.  

Upon closer study of the plot, we can distinguish three different phases:  

- Phase 1 (Before the black dot): An important increase in the COF is observed, where it goes 

from 0 to almost 0.24.  

- Phase 2 (Between the black dot and the red square): The COF changes in value but not in an extreme 

way. We can say it keeps a more or less constant value. 

- Phase 3 (After the red square): Sudden value changes (peaks) appear in the curve. Both the 

peaks value and their frequency of occurrence increase in time. The value to which 

the COF goes back to after passing each peak changes during the test.  



Page | 54 

 

 

Figure III-1: Evolution of the average per lap of the coefficient of friction during test 5: 

The peak phenomenon is interesting since it represents a sudden but temporary increase in 

friction. In order to understand the origin of these events more deeply, it is necessary to use 

instantaneous data since Figure III-1 only presents the average per lap of the COF.  

1.1.2. Instantaneous signals 

Figure III-2 shows the evolution of the average per lap of the coefficient of friction along 

with the instantaneous recordings of the tangential force and the vibration levels of the three 

Cartesian axes detected on the pin. All the signals are in function of the travelled distance.  



Page | 55 

 

 

Figure III-2: The evolution of the average per lap of the COF, the tangential force and the vibration levels in the three 

Cartesian axes recorded during test 5. 

Interestingly, the first fact we can identify from the tangential force curve is that there are 

two types of peaks: the repeatable spikes and the sudden peaks. The repeatable spikes are found 

during all the duration of the experiment. They may change value but their periodicity does not 

change. The sudden peaks however happen abruptly and interrupt the repeatable spikes. They 

are differentiated by their higher values when compared to the repeatable ones. First, we study 

the sudden peaks. Examination of the vibration levels in the three axes shows that whenever we 

record a sudden change in the tangential force there is a simultaneous change in the vibration 

levels. We highlighted these events using the grey rectangles in Figure III-2. Therefore, the 

movement of the pin while those peaks take place does not follow a line (one axis) or a plane 

(two axes) but it moves in space (three axes). In addition, the peak registered are not momentary 

but they last in time. Their duration is not a constant and it changes during the test.  

To understand the repeatable spikes, we focus on the [3m 4m] interval, as shown in Figure 

III-3. A lap in this test is equal to 0.125 𝑚. We can see that the peaks occur periodically (with 

different intensities). However when we consider the totality of the tangential force, the spikes 

keep their periodicity but their intensity changes. Different theories are elaborated in order to 

explain those spikes of which we cite:  

-  As we saw in the last chapter, the disk’s surface initially had a certain texture. 

However, in Figure III-4, we can notice that the disk’s surface still has a texture after 
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the sliding test. This texture is a mixture of the third body layer and the disk’s surface 

itself since we did not clean the latter after the sliding test. 

- The belt used to transfer the rotational movement from the motor to the disk is made 

of rubber and is called a timing belt. It has teeth that match the toothed pulleys (one 

on each axis of the motor and the disk). This match needs to be perfectly measured 

and timed in order to maintain the movement. However, since the belt is rubber, it 

tends to elongate when it starts to wear, which may create a stick-slip like movement. 

 

Figure III-3: Isolated section of the tangential force signal (interval [3m 4m]). 

 

Figure III-4: Disk's state after the sliding test (without cleaning). 
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1.1.3. In-situ observations  

During the test 5, we use a camera to record the outlet of the contact, in order to monitor the 

state of the sliding track and the behaviour of the third body particles. Studying the video 

recordings shows that the sliding track and the wear debris pass through three different phases:  

- Phase I (From the start until lap 9): At this observation scale and this stage, no modification 

on the disk’s surface is visible and no third body particle can be seen.  

- Phase II(From lap 9 until lap  45): The reflective properties of the sliding track change. In this 

phase the sliding track becomes clearer and wider. Third body particles are now 

visible but in a small number, and they are only present on the sliding track itself. 

- Phase III (From lap 45 until the end): The sliding track gets brighter in time and it has a more 

pigmented aspect, which indicate small third body particles. In addition, their location 

is no longer limited to the sliding track, but they become visible on its boundaries.  

In Table III-2, we present a representative frame from each different phase to back up the 

descriptions we stated earlier. The frames show the same spot on the disk each time to have a 

correct judgement on the state of the contact. The black tape visible on the pin is necessary to 

reduce the reflective light on the disk’s surface and to make the observation possible. Moreover, 

in Figure III-5, we divide the COF curve in three phases using the in situ video records. We 

can notice that the phases we distinguished when studying the COF (Section 1.1.1. of this 

Chapter) almost coincide with the in situ phases. The error degree is due to the different scales 

of examination: the COF curve is an intermediate scale (between the microscopic and the 

macroscopic scales) observation to the movement of the pin (and therefore the contact) while 

the in situ video is a macroscopic investigation of the contact.   
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Figure III-5: The evolution of the average of the COF per lap during test 5 in the sliding distance and the different phases 

detected. 
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Table III-2: The evolution of the sliding track and the behaviour of the wear debris during test 5. 

Starting at the lap 103 (≅ 13 𝑚 of sliding), some third body particles appear to become 

attached or glued to the surface of the pin from the outlet zone (the only side visible in the in 

situ records). The exact explanation for this phenomenon is unclear and we can only speculate 

for the reasons of this phenomenon. The steel used is a ferromagnetic material. Keeping the 

two first bodies in contact for a period of time (≅ 30 𝑚𝑖𝑛 for test 5) may create a small magnetic 

field. This latter does not have an effect on the contact itself but it could influence the third 

body particles. This phenomenon could also be related to an electrostatic effect or adhesion-

related. However, it does pull some of the third body particles to the pin’s surface, as it is visible 

         Test                     

Phase 
Test 5 Argon Sliding track evolution 

Phase I 

 
From the start until cycle 9 

 

Phase II 

 
From cycle 9 until cycle 45 

 

Phase III 

 
From cycle 45 until the end 
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in Figure III-6. To simplify the discussion, we will refer to this phenomenon as ‘the attraction 

phenomenon’ when encountered again.   

 

Figure III-6: The attraction phenomenon during Test 5. 

1.1.4. Dynamic rheological measurements  

In order to describe the dynamic results of the tests, we chose to use the average and the 

standard deviation of the COF at the established period. This period is when the contact between 

the pin and the disk reaches some kind of steady state, and we passed the running-in period. 

After studying all the conducted tests, we chose to fix the 10 𝑚 point as our turning position. 

Before the 10 𝑚, we judge that the contact is still in a running-in state, and after that sliding 

distance it passes to the steady state period.  

Our first rheological descriptors have the following definitions. If we consider our raw data 

vector 𝑆, which has a size equal to 𝑁: 

- Average per lap of COF signal: 𝜇 =
1

𝑁
∑ 𝑆𝑖

𝑁
𝑖=1  

- Standard deviation of COF signal: 𝜎 =  √
1

𝑁−1
∑ |𝑆𝑖 − 𝜇|²𝑁

𝑖=1  

Both descriptors are calculated using MATLAB.  
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1.2. Post-mortem inspection 

In order to complete the tribological analysis, we investigate the contact zone on the pin and 

the sliding track on the disk. When the targeted sliding distance fixed is reached, the test is 

stopped and the contact is opened by separating the pin and the disk. Both first bodies are 

observed under the scanning electron microscope without being cleaned.  

1.2.1. The pin  

In Figure III-7, we can see the SEM observation of the used zone on the pin after the 

separation of the first bodies. This zone can be divided into three sections: The inlet area, the 

contact area and the outlet area. When the first third body particles are created (start of the 

second in situ phase), and following the movement direction, the inlet zone is the area where 

the deposited particles first enter into contact with the pin. The contact area is the zone where 

the disk and the pin connect. Whereas the outlet area is the last point (for a given lap) where 

the third body particles exiting the contact area touch the disk. Inside the contact area itself, 

lighter and darker zones are clearly visible. 

In Figure III-8, we display the state of the contact area, without cleaning it after the sliding 

test, on the pin using a profilometer. This observation shows a certain texture that occupies this 

zone.  

 

Figure III-7: General SEM view of the used area on the pin after test 5. 
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Figure III-8: Representation of the topography of the used area on the pin after test 5. 

On the outlet area, we can see the effect of material removal that left the scratched-like 

marks. Those signatures may be be a result of material adhesion or the flow of third body 

particles in the contact. Therefore, they can be an indicator of the severity of those flows 

specifically before exiting the contact. 

1.2.2. The disk 

We present in Figure III-9, the state of the sliding track on the disk at the end of test 5. Just 

like the pin, we can distinguish three different regions that we can name appropriately when we 

link this observation with the in situ video: the ejection zone, the contact boundary and the 

contact area. The ejection zone is filled with third body particles that are, as the name suggests 

it, ejected from the contact and, unless intentionally moved by the user, do not have any 

contribution to the contact after their ejection. However, the boundaries are filled with particles 

that may still be used in the contact.  



Page | 63 

 

 

Figure III-9: General SEM of the sliding track on the disk after test 5. 

1.2.3. Third body particles  

During the sliding test, a layer of third body particles is created, commonly known as wear 

debris. To complete the study of the contact, this outcome must be investigated. The entire 

sliding track on the disk and the contact zone (with their different areas) are microscopically 

observed using the SEM. The analysis in this section is only qualitative.  

The theoretical diameter of our point contact according to Hertz’s calculations is 0.62 𝑚𝑚 

and during the test, it evolves. We chose to work with a maximum of 1500 as a magnification 

factor to have images containing the largest number of particles while covering the entirety of 

the sliding zone and the contact area. Choosing a much higher magnification factor (2500 −

5000) would result in getting images with fewer and more defined particles. However, it would 

need much more images to cover the contact zones on the pin and the disk.  
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Studying the result from test5, we can see that the third body particles are found in two 

configurations on the pin: separated ‘individual’ particles or a cohesive layer. Figure III-10 

displays those two configurations found on the pin. Circled in blue are the cohesive layers found 

and in yellow some the separated particles. The number of particles found is more significant 

than the layers that can be detected visually.   

 

Figure III-10: Third body created during test 5 on the pin. 

 

Figure III-11: Third body particles created during test 5 on the disk. 

1.2.4. Post-mortem rheological measurements  

From this section, we chose four descriptors that can help us identify the sliding tests 

conducted. The descriptors are the following:  

- The percentage of the cohesive zone relative to the entire contact area on the pin: 

The cohesive zones are defined as the zones that appear darker on the contact area 

on the pin. That change in grey level is due to a pressure change. The darker the 

zone is, the greater the pressure applied in it is. Therefore, this indicator can inform 
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us on the spatial distribution of the pressure in the contact. As we can see in Figure 

III-12, we select the dark zone in the contact on the pin and calculate their cumulated 

surface. Our descriptor is the percentage of the total surface of the cohesive zones 

relatively to the surface of the contact area.  

 

Figure III-12: Selection of the cohesive zones (black continuous outline) in relative to the total surface of the contact area 

(red dotted outline). 

- The intensity of the flow: We judge it mainly using the output area on the pin. After 

studying the results of different tests, we conclude that there are mainly three flow 

levels, as visible in Figure III-13: Mild (1), Medium (2) and Extreme (3). The 

different flows are judged visually. We judge the flow on how the exit path of the 

particles on the contact zone on the pin looks: the more significant the exist marks 

are the more intense the flow is. Each flow is given the numerical value that is in 

parenthesis in front of it name.  

 

Figure III-13: Different intensity levels of the flow. 
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- The diameter of the contact area on the pin: Since the contact area resembles a circle, 

we try to estimate its diameter. We calculate it using a MATLAB algorithm where 

the user selects the length that he deems correct. 

- The width of the contact on the sliding track: This parameter is calculated to check 

if the contact area on the pin covers all the contact area on the sliding track. It is 

calculated using the same MATLAB code as the first descriptor. 

1.3. Summary  

At the end of the examination protocol, each test should provide six rheological 

measurements that characterize the mechanical-rheological behaviour of that test. The 

descriptors (measurements) chosen are summarized Table III-3. In the next sections of this 

chapter, we use 𝑅𝐷 as short for Rheological Descriptor to avoid using the full definition of each 

descriptor.  

Table III-3: Rheological data summary. 

Label Description Value 

𝑅𝐷1 
Average of the friction factor in established 

state (After the 10 𝑚 mark). 
𝜇 =

1

𝑁
∑ 𝑆𝑖

𝑁

𝑖=1

 

𝑅𝐷2 

Standard deviation of the real time friction 

factor signal in established state (After the 10 𝑚 

mark). 
𝜎 =  √

1

𝑁 − 1
∑|𝑆𝑖 − 𝜇|²

𝑁

𝑖=1

 

𝑅𝐷3 
The percentage of the cohesive zone 

relatively to the entire contact area on the pin 
∈ [0,100] 

𝑅𝐷4 The intensity of the flow ∈ {1; 2; 3} 

𝑅𝐷5 The diameter of the contact area on the pin 
ℝ+: positive real 

𝑅𝐷6 The width of the contact on the sliding track 

2. Set 1 analysis  

Table III-4 summarizes the conditions of the tests in set 1, where the varying parameter is 

the linear speed. The modification of the linear speed is implemented by changing the radius of 

the sliding track and not by changing the rotational speed. In fact, this parameter is fixed 
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between the three tests at 6 𝑙𝑎𝑝𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒. Using this method, we do not change the 

vibration errors captured by the sensors originating from the motor and/or the transferring belt. 

Table III-4: Set 1 conditions. 

Tag 
Radius 

(m) 
Normal 

force (N) 

Linear 

speed 

(m/s) 

Temperature 

(°C) 

Humidity 

(%) 

Gaseous 

environment 

Distance 

covered (m) 

Test 1 0,02 

10 

𝟎, 𝟕𝟓 22 51 

Air 

≅ 25 

Test 2 0,015 𝟎, 𝟓𝟔 20 49 ≅ 24 

Test 3 0,01 𝟎, 𝟑𝟖 23 50 ≅ 25 

2.1. Dynamic results  

Figure III-14 shows the evolution of the average per lap of the coefficient of friction (COF) 

during the tests in set 1. Each curve presents three different phases starting and finishing at 

different points: 

- Phase 1(before the block dot): The COF starts at a near zero value and increases swiftly 

until it reaches a maximum value before it decreases for the first time.  

- Phase 2 (between the black dot and the red square): The COF evolution is characterized by the 

occurrence of significant peaks.  

- Phase 3 (after the red square): The COF achieves a more or less constant value. Small 

peaks (in comparison with those of Phase 2) are detected.  

Numerous differences between the coefficient of friction from the three tests are noticed 

from studying Figure III-14: 

- The length of each phase detected varies between the tests. The phases in the curve 

from test 2 are the longest, followed by those from test 1 and finally those ones from 

test 3. The duration of the phases does not seem to be linearly correlated to the linear 

speed of sliding 

- At the end of Phase 1, the coefficient of friction is almost equal between test 1 and 

test 3. However, the COF from test 2 is much larger.  

- The peaks that the COF witnessed during Phase 2 are different between the three 

tests in both their values and their frequency of occurrence.  

- After establishing an almost constant COF in Phase 3, the test 2 and test 3 reach 

similar values. However, the value from test 1 is different. This difference can be 

explained by the duration difference between the tests. Since we use different speeds 
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to achieve almost the same covered distance, the duration changes between the tests 

(the fastest speeds corresponds to the shortest test timewise). However, we find no 

direct (linear) correlation between the difference of the final value of the COF and 

the linear speed chosen.  

 

Figure III-14: The evolution of the friction coefficient average per lap for the three different tests of set 1. 

The accelerometer was installed only in test 1 and test 2. The instantaneous evolution of the 

tangential force and the vibration levels following the three Cartesian axes are displayed in 

Figure III-15. We can see that at each instantaneous peak we register in the tangential force, 

we register a peak in the vibration levels as well. This means that the peaks in the tangential 

force are a direct result of a movement of the pin and not some external event. In addition, after 

the peak the tangential force does not go directly back to its level before the peak but it still 

varies. We also notice that before entering Phase 3, the vibration levels become more important 

than they were before, and then stay at that level. 

Unfortunately, the in situ visualisations for the three tests were lost due to a technical fault 

with the registering devices. Therefore, we lack their analysis section.  
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Figure III-15: The average per lap of the COF and the instantaneous recordings of the tangential force and the vibration 

levels in the three Cartesian axis recorded during test 1 (Blue on top) and test 3 (Purple on the bottom). 
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2.2. Post mortem investigations  

In Table III-5, we present the images of the used areas on the pin and the sliding track on 

the disk at the end of each test and after opening the contact.  

2.2.1. Pin  

The used section of the pins from all the tests can be divided into 4 different zones: the inlet 

area, the contact area, the outlet area and the third body portal. The latter section seems to have 

the same visual properties (dense and compact) in the three tests with a slight difference in size 

and it is not present in all the tests, which explains its absence from the example treated in the 

analysis protocol section. During the sliding tests, third body particles are created from the 

contact between first bodies. However, those particles leave the contact at a certain point to 

move on the turning sliding track. Eventually, and since there is no obstacle that will make them 

leave the track, the particles meet the pin in the inlet area and try to re-enter the contact. During 

the contact, the third body particles start assembling creating a very large agglomerate, just 

before the inlet area, that we name third body portal. The size difference between the three 

portal sections is not necessarily a property of the contact. If the test conductor is not careful 

when removing the pin from its supporting arm, the shaking movement could result into parts 

of the portal breaking apart and parts of it falling from the pin’s surface on the disk’s surface.  

In order to determine the third body flows as defined in the analysis protocol earlier (page 

61), we study the outlet zone on the pin. In Table III-6, we represent this section for the three 

tests in set 1. In test 2, we judge that the flow that took place cannot be considered as mild nor 

extreme when compared to the examples of each type given earlier. Therefore, it is considered 

as a medium. However to determine the flow type in test 1 and test 3, we turn to the topography 

images, in Figure III-16. We can see that in the test 3, the marks (highlighted in Figure III-16 

with red arrows) look deeper than those from test 1. We judge that the flow in test 1 is medium 

and the flow in test 3 is extreme.   
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Table III-5: The state of the used area of the pin and the sliding track on the disk after the tests in set 1. 

 Pin Disk 

Test 1 

0.75 m/s 

  

Test 2  

0.56 m/s 

  

Test 3  

0.38 m/s 
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Table III-6: The outlet area state from the tests in set 1. 

 Test 1 Test 2 Test 3 

Outlet 

area 

   

 

Figure III-16: Topography (mode BSE in the MEB) images of the used area from: A) Test 1. B) Test 3. 

2.2.2. Disk  

The three sliding tracks can be divided into 3 different areas: the ejection zones, the contact 

boundaries and the contact area. Between the three tests, the ejection area and the contact 

boundary are full of separated particles and much smaller particles fill the contact area. The 

blocks of particles seen in the upper ejection area of the sliding track resulting from test 2 have 

most likely fallen from the third body portal during the contact opening procedure or during the 

test itself.  

In Figure III-17, we see the topography images of the contact boundaries and area of the 

sliding track from each test in set 1. Studying those images, we find a texture that is 

characterized by parallel curved lines (highlighted in yellow) all along the contact area and its 

boundaries.  Those should not be mistaken with the lines that exist in the ejection zone that are 

highlighted in red. 
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Figure III-17: Topography state of the sliding track after the tests in set 1. 

When analysing the pin topography from test 3 in Figure III-18, it appears that it presents 

a particular texture (section highlighted in blue). The sliding track’s topography shows a similar 

(complementary) texture in the spot where the pin and disk connect.  

 

Figure III-18: Relating the pin's and the disk's contacting areas from test 3. 

Examining the used area on the pin and the sliding track on the disk, we can propose the 

following scenario to explain the various peaks we observe in Figure III-14:  

1) Third body particles are stuck in the inlet of the contact during the sliding test until 

a certain a threshold (in relation with the maximum supported tangential force before 

the pin’s arm is moved) is reached, which explains the creation of the third body 

portal observed on the pins after each test.  

2) Certain parts of the third body particles pass through the contact area. This event 

results in the peaks we observe in the tangential force recordings and the change in 

the vibration levels in all the three directions because this mass moves the pin.  
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3) The bulk of the particles that passed change the topography of the contact area 

shortly, which justifies the perturbations we see in the tangential force after the peak 

is recorded.  

4)  After a certain number of laps, the third body particles either are ejected or stuck 

again in the inlet of the contact. This explains how the tangential force goes back to 

the same pattern similar to that before the peak.  

2.2.3. Third body particles  

We cannot study the wear debris created during the sliding tests from the microscopic views 

covering the totality of the used areas on the pin and the disk. We need to magnify more but 

still respect the 1500 limit that allows us to stay in the macroscopic scale. At this point, the 

images are inspected visually.  

In Table III-7, we display the variety of images of third body particles found on the pin and 

the disk from the different zones determined earlier. We distinguish two types of findings: 

separated particles/agglomerates (yellow dotted outline) and cohesive layers (blue continuous 

outline). It is the same observation in all the tests from set 1, which either means that the linear 

speed at which the disk turns has no effect on the creation of the third body or that the 

investigation method is not sophisticated enough.  

The found cohesive layers found seem to have an elongated form following the direction of 

the slip, as we can see in Figure III-19. However, they also look crushed in different directions 

indicating complex accommodation regimes. The separated particles are created when parts of 

the cohesive layer reach they elasticity limit and break. Figure III-19 illustrates this theory by 

highlighting the breaking phenomenon.  

From this figure and knowing the direction of rotation, we can interpret the different 

observations. The yellow arrows show the direction that the spreading of this layer seems to be 

following. The green sections are where we notice that parts of the layer start to break. We can 

see that such events can be of two types: very small particles (with a powder-like aspect at this 

scale) and much larger fragments.  
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Figure III-19: The state of the cohesive layer in A) Test 1. B) Test 3. 
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Table III-7: The state of the third body particles produced during the tests from set 1 (separated particles in yellow and cohesive layer in bleu). 

 

 Contact area on the pin Sliding track on the disk 

Test 1 

0.75 m/s 

 

 

Test 2 

0.56 m/s 

 

 

Test 3 

0.38 m/s 
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2.3. Set 1 rheological measurements  

Table III-8 summarizes the different rheological measurements describing the test from set 

1, where we changed the linear speed by decreasing it from test 1 to test 3.  

Table III-8: Set 1 rheological data (defined page 60). 

 Test 1 0.75 m/s Test 2 0.56 m/s Test 3 0.38 m/s 

𝑹𝑫𝟏 0.44 0.54 0.49 

𝑹𝑫𝟐 0.11 0.09 0.05 

𝑹𝑫𝟑 (%) 16 18 36 

𝑹𝑫𝟒 2 2 3 

𝑹𝑫𝟓 (mm) 1.22 1.25 0.94 

𝑹𝑫𝟔 (mm) 1 1.1 0.84 

3. Set 2 analysis  

The experimental parameters of the three tests conducted under set 2 are summarized in 

Table III-9. Studying the effect of the gaseous environment was the main interest in this set. 

Test 4 was conducted in air while Test 5 and Test 6 were conducted in argon with the help of 

the gas enclosure defined earlier. The other controllable parameters are fixed between the three 

tests in order to associate any resulting variation to the gas used.  

Table III-9: Set 2 conditions. 

Tag 
Radius 

(m) 
Normal 

force (N) 

Linear 

speed 

(m/s) 

Temperature 

(°C) 

Humidity 

(%) 

Gaseous 

environment 

Distance 

covered (m) 

Test 4 

0,02 10 0,63 

22 44 Air 

≅ 18 Test 5 20 50 Argon 

Test 6 23 50 Argon 

3.1. Dynamic results  

Following the analysis protocol, we study first the evolution of the COF curves shown in 

Figure III-20. Each curve is the evolution of the average per lap of the coefficient of friction 

in distance. We can distinguish 3 different phases in each curve:  
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- Phase 1(before the black dots): The COF increases quickly from zero to a value at which 

the raise stops.  

- Phase 2(between the black dots and the red squares): The COF keeps increasing but at a very low 

rate. 

- Phase 3(after the red squares): Noticeable peaks appear in the evolution of the COF. The 

value of the COF keeps changing after each peak.  

From this figure, we can detect many differences between the COF results from the tests 

conducted in Argon and the test conducted in Air:  

- The lengths of the phases detected in tests 5 and 6 are almost equal. While the length 

of the phases detected in test 4 are different.  

- The value of the COF at the end of phase 1 is different between the three tests.  

- During phase 2, test 4 demonstrates small peaks. However, the COF’s value goes 

back to its previous value after passing each peak. The COF from test 5 and test 6 

do not show any peaks during that phase, but keep a more or less constant value.  

- In phase 3, the curves from test 5 and test 6 record very important peaks until the 

end of each test. In test 4, the evolution of the COF passes by peaks as well but they 

are less significant than those registered in the other tests. In addition, at the end of 

test 4 the interface seems to have reached a steady state.  

 

Figure III-20: The evolution of the friction coefficient average per lap for the three different tests of set 2. 
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At this point, we can conclude that, at least when studying the COF curves, our materials 

behave differently in argon than in air.  

During the three tests, we record the outlet of the contact as described in the last chapter. 

Studying the resulting films proves that the three tests pass through the same 3 phases that were 

detected when studying the test 5 (used as an explanatory example for the analysis protocol). 

In Table III-10, we show different frames to highlight each phase. The frame is always of the 

same spot in order to be able to compare the changes between the three phases. Using just the 

in situ visualisation, we notice differences between the two atmospheres. During the test in air, 

we can detect that the third body particles are not as big as in argon. In addition, the ejection 

zone on the disk is more established (distinguishable from the sliding track) in air.   
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Table III-10: The evolution of the sliding track during the three tests in set 2. 

                Test 

   Phase 

Test 4 Air Test 5 Argon Test 6 Argon 

Phase I 

 
From the start until cycle 9 

 
From the start until cycle 9 

 
From the start until cycle 39 

Phase II 

 
From cycle 9 until cycle 27 

 
From cycle 9 until cycle 45 

 
From cycle 39 until cycle 79 

Phase III 

 
From cycle 27 until the end 

 
From cycle 45 until the end 

 
From cycle 79 until the end 
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3.2. Post mortem investigations  

After each test, we separate the first bodies and observe them under the SEM. Table III-11 

presents the used areas on the pins and the disks after the tests in set 2.  

Table III-11: The state of the used area of the pin and the sliding track on the disk after the tests in set 2. 

 Pin Disk 

Test 4 

Air 

  

Test 5  

Argon 

  

Test 6  

Argon 
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3.2.1. Pin  

Focusing on the used areas on the pins, we can see that the three pins can be divided just like 

the pins from set 1. Essentially, we find three main shared zones: the inlet area, the contact area 

and the outlet area. However, we only find the third body portal in test 4 and test 6. In addition, 

in test 6, we can detect a new zone located after the outlet area that we call ‘Third body escape’. 

This zone is the same zone we observe in the in situ visualisations after a certain number of laps 

due to the attraction phenomenon. It is seen in every tests of set 2, as proven in Figure III-21.  

Third body portals are observed in tests 4 and 6 but they do not share the same visual 

characteristics, as appears in Figure III-22. The portal in test 4 (Figure III-22.A) looks denser 

and more compact than that from test 6 (Figure III-22.B). The particles that form the portal 

zone in test 6 have a fibre-like look. The absence of the portal zone in the pin resulting from 

test 5 is a result of accidentally shaking violently the pin when removing it from its fixing arm.   

 

Figure III-21: The attraction phenomenon during the tests in set 2. 
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Figure III-22: The state of the third body portal from: A) Test 4. B) Test 6. 

To evaluate the flow that took place in each test, we study the outlet area as defined in the 

analysis protocol. The three areas are shown in Table III-12. We can conclude that the flow in 

test 4 was medium while in test 5 it was extreme. However, it is necessary to use the topography 

image of the used area in the pin from test 6 in order to make a relevant assessment, as shown 

in Figure III-23. This latter reveals that the visible scares (pointed at by the red arrows) on the 

outlet area are deep and significant. Therefore, we assign the extreme attribute to the flow in 

test 6.  

Table III-12: The outlet area state from the tests in set 2. 

 Test 4 Air Test 5 Argon Test 6 Argon 

Outlet 

area 
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Figure III-23: Topography images of the used area from Test 6. 

3.2.2. Disk  

Studying the three different sliding tracks from the two gaseous environments shows that 

they share the same division into three zones: the ejection areas, the contact boundaries and the 

contact area.  

In the air (Test 4), the components of each area are the same as in set 1: separated particles 

with different sizes in the ejection area and the contact boundary and much smaller particles in 

the contact area. However, in the tests conducted in argon (Test 5 and Test 6), the sliding tracks 

are full of large particles (compared to those from Test 4). A close analysis of Figure III-24, 

where we show the topography images of the sliding tracks from the tests in set 2, reveals how 

much different the third body distribution is when changing from air to argon.  
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Figure III-24: Topography (BSE mode in the MEB) images of the sliding track from A) Test 4. B) Test 5. C) Test 6. 

Even though the third body particles are not scattered alike between the two environments, 

the texture of the tracks is similar between the tests. In Figure III-25, we highlight the detected 

texture with yellow parallel lines just like in Set 1.  

 

Figure III-25: Highlighted texture in the topography (BSE mode in the MEB) images of the sliding track from A) Test 4. B) 

Test 5. C) Test 6. 

3.2.3. Third body particles  

We focus in this section on the third body particles found on both the pin and the disk after 

the tests in set 2. We respect the recommendations mentioned in the analysis protocol.  

The third body is present under two types, which are similar to those described when 

analysing the results of set 1: individual separate particles and cohesive layers adhering to the 

surface of one of the first bodies. We display illustrations of both types in the three tests in 

Table III-13. 

A study of the particles on the disk shows the effect of changing the gaseous environment 

from air to argon. In fact, in air, it appears that most of the created particles are transported to 

the ejections areas (Figure III-26.A) and only small particles are found on the contact area 

(Figure III-26.B). However, when using argon, the particles are not ejected as easily since the 

ejection areas in test 5 and 6 (Figure III-27.A) are not as full as in test 4, and they seem to 
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remain longer in the contact area (Figure III-27.B). The particles produced in argon seem to 

adhere to each other and to the surfaces of the first bodies more than those created in air.   

 

Figure III-26: Comparison between the third body particles (SE mode in the MEB) found in A) The ejection area. B) The 

contact area from test 4. 

 

Figure III-27: Comparison between the third body particles (SE mode in the MEB)found in A) The ejection area. B) The 

contact area from test 5. 
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Table III-13: The state of the third body particles produced during the tests from set 2 (separated particles in yellow and cohesive layer in blue). 

 

 Contact area on the pin Sliding track on the disk 

Test 4 
Air 

 

 

Test 5 
Argon 

 

 

Test 6 
Argon 
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The peaks registered in the COF signals in Figure III-20 are explained by the same scenario 

detailed in set 1. Nevertheless, since the particles in tests 5 and 6 stick together and to the 

surfaces of the first bodies more than those created in test 4, the threshold that the tangential 

force needs to reach before breaking the particles stuck in the portal zone is more important in 

tests 5 and 6. Hence, the peaks in the COF’s curves for those tests are more important than the 

peaks in the COF’s curve from test 4.  

3.3. Set 2 rheological measurements  

We assign the numerical values to each rheological measurement as defined in the analysis 

protocol in order to describe each test. Table III-14 detail each measurement for the tests in set 

2. The percentage of the dark zones in the contact area on the pin from test 6 could not be 

calculated due to the high concentration of third body particles that made that task impossible.  

Table III-14: Set 2 rheological data. 

 Test 4 Air Test 5 Argon Test 6 Argon 

𝑹𝑫𝟏 0.26 0.43 0.35 

𝑹𝑫𝟐 0.04 0.17 0.12 

𝑹𝑫𝟑 (%) 12 21 - 

𝑹𝑫𝟒 2 3 3 

𝑹𝑫𝟓 (mm) 1.25 0.7 0.94 

𝑹𝑫𝟔 (mm) 1.2 0.68 0.72 

4. Set 3 analysis  

During set 3, we study the effect of varying the total sliding distance covered during the 

tests. Similarly to the two previously analysed sets, we conduct three different tests and Table 

III-15 summarizes the conditions for each of them. The change in the covered distance is a 

result of a change in the duration of each test. This ensures that the effects originating from the 

rotating motor or the transferring belt are the same between the tests.  
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Table III-15: Set 3 conditions 

Tag 
Radius 

(m) 
Normal 

force (N) 

Linear 

speed 

(m/s) 

Temperature 

(°C) 

Humidity 

(%) 

Gaseous 

environment 

Distance 

covered (m) 

Test 7 

0,01 10 0,37 
27 42 

Air 

≅ 24 

Test 8 23 49 ≅ 22 

Test 9 21 51 ≅ 15 

4.1. Dynamic results  

During the tests, we record the tangential force in order to calculate the coefficient of friction. 

In Figure III-28, we print the average per lap coefficient of friction and its evolution in 

distance. We distinguish three different phase when studying the three curves:  

- Phase 1(before the black dots): The COF rises in value almost instantly from zero to a 

maximum before which it decreases for the first time.  

- Phase 2(between the black dots and the red squares): The COF’s value experiences large 

fluctuations, that are characterized by the peaks we record. The COF’s average value 

is increasing during this phase. 

- Phase 3(after the red squares): The peaks are less apparent in the curves and the COF’s 

average value reaches a more or less constant value. 

 

Figure III-28: The evolution of the friction coefficient average per lap for the three different tests of set 3. 
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With the tests having the same conditions, we supposed that the tests’ results would be 

similar. However, studying the COF curves demonstrates multiple differences between the 

tests: 

- Even thought, the length of Phase 1 is similar between the tests, the length of the 

two other phases is not. For Phase 2, test 7 has the longest duration and test 9 has 

the shortest.  

- The value each curve achieves at the end of Phase 1 is not the same for the three 

tests. Test 8 has the highest COF at the end of that phase followed by test 7 while 

test 9 has the lowest.  

- The peaks values differ between the tests in Phase 2. In tests 8 and 9, the peaks are 

very important in value when compared to the average value of the COF in those 

tests. In test 7 we observe smaller peaks.  

- Test 7 and test 9 attain an established state in Phase 3 recognisable by the small 

peaks and the constant COF value. In test 8, the peaks decrease in value in Phase 3 

when compared to those in Phase 2. However, they are more noticeable than in the 

other two tests.  

- In test 9, the COF value decreases at the end of Phase 3, unlike the other two tests. 

This drop is mainly caused by a drop in the instant peaks values. In Figure III-29 

we can see this phenomena highlighted furthermore.  

 

Figure III-29: The average per lap and the instantaneous evolution of the coefficient friction in distance during test 9. 
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The in situ films are only available for the test 7 and 9. They show that the contact goes 

through the same three phases as in set 2. The attraction phenomenon starts in test 9 from 49 

laps as shown in Figure III-30.  

 

Figure III-30: The attraction phenomenon during the tests in test 9. 

4.2. Post mortem investigations 

Following the analysis protocol, we observe the pins and the sliding tracks after the tests of 

set 3 under the SEM. Table III-16 shows the used areas from the first bodies at the end of each 

test.  

4.2.1. Pin 

When studying the used areas on the pin, we distinguish the same four zones as in set 1 and 

set 2: the Third body portal, the Inlet area, the Contact area and the Outlet area. The Third body 

portals, even though different is size, hasve the same structure between the three sets; compact 

and dense. The size difference can be a result of moving the pins when the test is stopped to the 

SEM or the progressive creation of this section during the test. 

We can also see that the existence of the particles is not limited to the used areas but they 

are dispersed all over the observable area, especially in tests 8 and 9. 

When we analyse the topographical images of the used areas on the pins, in Figure III-31, 

we can see that a certain texture is present on all the contact areas. It is highlighted using the 

dark blue lines in Figure III-31. 
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Table III-16: The state of the used area of the pin and the sliding track on the disk after the tests in set 3. 

 Pin Disk 

Test 7 

24 m 

  

Test 8  

22 m 

  

Test 9  

15 m 

  



Page | 93 

 

 

Figure III-31: Highlighted texture in the topography images of the used area on the pin from A) Test 7. B) Test 8. C) Test 9. 

In Table III-17, we focus on the outlet area to judge the flow of the wear debris that took 

place during the tests. The flow in test 7 qualifies as mild since the borders where the used area 

ends is barely visible. In tests 8 and 9, we judge the flow as medium.  

Table III-17: The outlet area state from the tests in set 3. 

 Test 7 24m Test 8 22m Test 9 15m 

Outlet 

area 

   

4.2.2. Disk  

When inspecting the sliding tracks on the disk, we find the three usual areas, like in the other 

two sets; the ejection area, the contact boundary and the contact area. Similar to test 4 from set 

2, the contact area at this scale of observation looks almost empty and the majority of the 

particles are in the ejection area. The particles we see in the image from test 9 have fallen from 

the pin during the removal process.  

Studying the topography images of each sliding track shows a texture that reassembles to 

parallel lines. Those lines are highlighted in Figure III-32. This texture is similar to the one we 

find on the contact areas of the pins.  
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Figure III-32: Highlighted texture in the topography images of the sliding track from A) Test 7. B) Test 8. C) Test 9. 

4.2.3. Third body particles  

Respecting the different instructions in the analysis protocol, we proceed to examine the 

third body created during set 3.  

Just like the other two sets of tribological tests, we find the wear debris under two forms: 

separated particles and cohesive layer attached to the surface of one of the first bodies, as seen 

in Table III-18. The separated fragments are highlighted in yellow and the layers in blue. We 

can see in Figure III-33 that the bigger fragments are always found in the ejection areas of the 

sliding tracks.   

 

Figure III-33: Comparison between the three different areas found in the sliding track from A) Test 7. B) Test 8. C) Test 9. 
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Table III-18:  The state of the third body particles produced during the tests from sets 3 (separated particles in yellow and cohesive layer in blue). 

 Contact area on the pin Sliding track on the disk 

Test 7 

24 m 

 

 

Test 8 

22 m 

 

 

Test 9 

15 m 
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4.3. Set 3 rheological measurements  

We calculate the different rheological measurements as defined in the analysis protocol. 

Table III-19 lists the descriptors for each test of set 3 where we changed the total sliding 

distance. 

Table III-19: Set 3 rheological data. 

 Test 7 24m Test 8 22m Test 9 15m 

𝑹𝑫𝟏 0.29 0.38 0.2 

𝑹𝑫𝟐 0.03 0.07 0.04 

𝑹𝑫𝟑 (%) 20 21 35 

𝑹𝑫𝟒 1 2 2 

𝑹𝑫𝟓 (mm) 0.9 1 1.2 

𝑹𝑫𝟔 (mm) 0.7 0.7 0.9 

5. Conclusion  

In this chapter, we analysed the experimental results of the tribological tests we conducted 

in order to be able to compare between the tests and study the effect of changing an experimental 

condition (Linear speed, Gaseous environment and Total covered distance). We choose six 

measurements that we calculate to characterize each test. Table III-20 summarizes the 

rheological database describing all the nine tests concluded. Even though the rheological 

parameters vary from one test to another, we increase the probability of guessing correctly the 

test they presented by having more than one parameter. In addition, in order to calculate those 

descriptors, we need to totally end the tribological test and separate the first bodies.  In the next 

chapter, we detail the methods we put in place to create the morphological database to describe 

the different particles created during each test. 

Table III-20: The rheological database 

 Set 1 Set 2 Set 3 

 
Test 1 

0.75 m/s 

Test 2 

0.56 m/s 

Test 3 

0.38 m/s 

Test 4 

Air 

Test 5 

Argon 

Test 6 

Argon 

Test 7 

24m 

Test 8 

22m 

Test 9 

15m 

𝑹𝑫𝟏 0.44 0.54 0.49 0.26 0.43 0.35 0.29 0.38 0.2 

𝑹𝑫𝟐 0.11 0.092 0.055 0.037 0.17 0.123 0.03 0.065 0.04 

𝑹𝑫𝟑 (%) 16 18 36 12 21 - 20 21 35 

𝑹𝑫𝟒 2 2 3 2 3 3 1 2 2 

𝑹𝑫𝟓 (mm) 1.22 1.25 0.94 1.25 0.7 0.94 0.9 1 1.2 

𝑹𝑫𝟔 (mm) 1 1.1 0.84 1.2 0.68 0.72 0.7 0.7 0.9 
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IV. Morphological data 
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Conventional analysis of the wear particles has traditionally been performed based on the 

judgment of tribology experts. However, even though their interpretations are precise and 

accurate, it is not an effective method when having a large quantitative data set. Besides, the 

knowledge extracted from such a subjective evaluation is difficult to transmit to non-experts, 

and therefore to use in other fields of the scientific or industrial community. Therefore, the use 

of modern technology could bring some improvements. We chose to develop an image-

processing algorithm that describes the third body particles created during a tribological test, 

using their microscopic images. This is performed by calculating a number of selected 

morphological descriptors. Using this method will reduce the subjectivity issue and improve 

the repeatability of the tribological analysis.  

This chapter starts by specifying the parameters used to capture the microscopic images of 

the wear debris particles. We then detail the image analysis algorithm that computes the 

morphological descriptors chosen in this project. Finally, we present the results of processing 

the different images from the three different sets of tests.  

1.  Microscopic images 

1.1.  Imaging parameters 

The scanning electron microscope (SEM) offers many parameters that the user can adjust to 

have control on the characteristics (histogram, contrast type …) and the quality of the acquired 

images. Those parameters are fixed in our study in order to avoid adding variables that can 

affect the image processing results while upholding an acceptable image quality. Table IV-1 

presents the values of the parameters for every image used in our database. However, two SEM 

parameters change between the tests, which are the contrast and the brightness levels. The 

magnification chosen for the images is fixed as explained earlier for a maximum of 1500. 
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Table IV-1: SEM parameters for the acquired images. 

SEM parameters Value 

Scanning velocity (µs) 30 

Resolution (px) 2048*1768 

Working Distance (mm) 10 

High Voltage (kV) 20 

Spot size 4 (current: 0.31 nA at 20 kV) 

Contrast [60 - 78] 

Brightness [38 - 43] 

Polarization of the SE detector grid 250 𝑉 

1.2. Visualisation procedure 

During our project, we choose to limit as much as possible the disturbance of the third body 

particles at the end of the test, in order not to influence their shape and spatial organization 

(distribution and localisation). During the visualisation procedure, we cover the entirety of the 

sliding track (zones defined in chapter 3) on the disk and the contact surface on the pin, in order 

to gather a maximum number of particles. This strategy does not take into consideration 

whether a considered particle was active (on the sliding track on the disk or on the contact zone 

on the pin) or passive (ejected) in the contact. In the case of an ejected particle, we do not have 

any information about the ejection time in relation with the contact’s lifespan.  

Even though the general observation of the third body particles proved its efficiency in the 

reconstitution of the contact’s life(Colas et al., 2013), this method did not help in differentiating 

between the different tests with different conditions, at the scale of the whole contact, as we 

saw in the previous chapter. It only resulted into identifying two types of wear debris: the 

separated particles (non-cohesive) and the cohesive layer. Therefore, a more detailed analysis 

method is required. Since we will be judging the morphology of the particles, the user must 

obtain images with particles that are easily identifiable. If the algorithm fails to identify the 

edges of each particle, the user should be able to correct it. We need to collect morphological 

data about as many particles as possible in order to have a collection that represents the totality 

of the particles created during the sliding test. However, the adequate quantity of particle 

morphologies to collect in order to obtain statistically meaningful results can only be estimated 

at the very end of the process, based on the success rates of the machine learning algorithms. 

This will be one of the sections of the next chapter.  
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2. Image processing 

We developed a human-machine interface to facilitate the interactions between the user (who 

is not usually a developer) and the image analysis algorithms. We chose to develop our own 

algorithms in order to include the functionalities we need and to make the program compliant 

enough for it to adapt to likely future requirements. The processing algorithm calculates a 

number of morphological descriptors to characterize each particle. 

2.1. Morphological descriptors 

Normally the morphology of an object refers to a description of its appearance, which 

includes its shape and texture. However, in our project, the morphological descriptors will only 

focus on the shape of the third body particles. We do not take into consideration the texture 

aspect, although they represent a promising idea for future work. Many studies were conducted 

to determine the best descriptors to characterize the shape of sediment particles (Blott and Pye, 

2008). However, we need to select a number of descriptors that does not overcomplicate the 

study and yet still gives an acceptable idea about the shape of the particles.  

 Four important aspects of the shape are considered crucial to judge the form of a particle, 

i.e., the elongation, the roundness, the regularity and the circularity (Mollon and Zhao, 2012). 

In Figure IV-1, we represent a geometrical explanation for the four morphological descriptors 

mentioned. A fifth measurement is added to quantify the 2D surface of the particles. We 

compute five descriptors for each third body particle:   

- Elongation =
𝑤𝑖𝑑𝑡ℎ

𝐿𝑒𝑛𝑔𝑡ℎ
 : this descriptor defines the aspect ratio of the particle. The 

width of the particle in our case is calculated by minimization with respect to the 

angle of rotation 𝜃. The closer the elongation measurement is to one, the less 

elongated the particle is.  

- Roundness =
∑ 𝑅𝑖𝑛

𝑛∗𝑅𝑖𝑛𝑠𝑐
 : It refers to the presence or the absence of sharpness in the 

particles edges. In the equation, the numbers 𝑅𝑖𝑛 are the radii of a large number of 

circles that fit inside the particles and touch its outline at the same time (𝑛 is their 

number). 
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- Regularity = log10 (
𝑃

𝑃−𝑃𝑐𝑜𝑛𝑣
) : This term indicates the presence of either projections 

or indentations on the particle’s surface. In this equation, 𝑃 is the perimeter of the 

particle and 𝑃𝑐𝑜𝑛𝑣 is its convex perimeter. The more regular the particle is (more 

convex), the bigger the value of the regularity descriptor is. 

- Circularity = √
𝑅𝑖𝑛𝑠𝑐

𝑅𝑐𝑖𝑟𝑐
 : It calculates how similar the shape of the particle is to a circle 

by dividing the radius of the largest inscribed circle 𝑅𝑖𝑛𝑠𝑐 by the radius of the 

circumscribed circle 𝑅𝑐𝑖𝑟𝑐.  The closer the particle is to a circle, the closer to one the 

circularity factor. 

- Area: this is the value of the apparent 2D surface. Mathematically, this descriptor is 

calculated by multiplying the area of a single pixel by the number of pixels confined 

within the contour detected. Calculating the area with the metric system (opposite 

to pixel based) helps to reduce the magnification level effect.  

 

Figure IV-1: Geometrical representation of the morphological descriptors adopted in this study: A) Elongation. B) 

Regularity. C) Circularity. D) Roundness.(Mollon and Zhao, 2012) 

The outline detected is only the contour of the particle as seen in the 2D image. It does not 

take into account the position of the particles relatively to the surface as shown in Figure IV-

2. We observe the same particle but change the tilt degree of the disk’s support. Even though 

the particle does not change, its aspect does due to its three dimensional shape and the two 
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dimension representation that we work with. To evaluate the difference between the two tilt 

degrees we present in Table IV-2 a comparison of the descriptors obtained for two different tilt 

angles.  

 

Figure IV-2: The tilt effect on the 2D SEM image. 

Table IV-2: Results of image analysis of the particles in Figure VI-2 

Tilt degree Elongation Regularity Roundness Circularity Area (µm²) 

0° 0,23 0,86 0,09 0,48 2,2 

11° 0,36 0,87 0,06 0,59 2,6 

In Figure IV-3, we display the morphological calculations for two particles from a sample 

of third body particles. We can see that the algorithm detects the edges of each particle and it 

sends back the five chosen morphological descriptors chosen. Particle 1 is almost a circle, which 

explains the elongation and the circularity factors that are almost equal to one. However, 

particle 2 is more elongated and less circular, therefore its elongation and circularity 

measurements are smaller than one. The roundness is small for both particles since they do not 

exhibit very sharp edges. The regularity factor results are also correct since particle 1 is more 

convex than particle 2.  
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Figure IV-3: Example of morphological descriptor calculations. 

2.2. Image analysis algorithms  

At this point, we generate the third body particles through the tribotests and acquire their 

microscopic images. The general aim of the image processing algorithms is to calculate the 

morphological descriptors to characterize each particle visible in the image. The code is written 

in MATLAB. It is especially convenient for our purpose since it has several pre-programmed 

toolboxes, one of which being an image processing toolbox with different functions for image 

analysis. Besides, it is a standard programming language in the academic environment.  

In order to be able to calculate the morphological descriptors of each particle, the algorithm 

has two intermediate steps that need to pass by. First, it must differentiate between the different 

particles present in the image and its background that is, in our case, either one of the surfaces 

of the pin or the disk or some other much larger particles. This separation is grey-level based. 

In all our microscopic images, the background is darker than the particles on it as can be seen 

in Figure IV-4 that shows multiple images from different tests. Secondly, the physical edges 

of each particle (i.e. its geometrical contour) must be detected individually. Since we opt not to 

move the particles from where they lay at the end of the tests, the particles may set on each 

other or overlap, as we see in the different examples in Figure IV-5. In this case, those particles 

are not taken into account. The detection of the edges is a semi-automatic procedure so the user 

may fix them if he considers the edges detected are not the correct ones. To facilitate the 

different interactions with the code written, we developed a human-machine interface where all 

the developed functions are accessible through buttons, as seen in Figure IV-6.   
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Figure IV-4: Different microscopic images of the first body surfaces resulting from the tribological tests. 

 

Figure IV-5: Illustrative unusable images of third body particles. 
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Figure IV-6: The main human-machine interface. 

2.2.1. Human Machine interface 

There are different buttons on the interface that we will explain further. We provide hereafter 

some brief descriptions of the general functions of the buttons.  

The buttons developed in the interface are: 

- ‘Close’: It closes all the open figures and clears the memory of the used variable. It 

is as if the software had just opened.  

- ‘Close figures’: It closes the open figures only.  

-  ‘Upload’: This button opens the file navigator to upload the image we want to work 

with. 

- ‘Reimport image’: It reloads the last original image used by the algorithm.   

- ‘Scale’: It calculates the length of a pixel using the scale found on the image.  

- ‘Crop’: It selects a region of interest of the image. 

- ‘Tilt’: It gives the possibility of turning the image around its centre to a degree the 

user fixes.   
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- ‘Delete surface’: It deletes a selected surface from the image. The algorithm tries to 

fill the deleted space with a gradient of colours that simulates its surrounding. This 

function works best for deleting more or less small sections of the image. 

- ‘Adjust’: This button allows changing the contrast. It opens a separate window with 

the histogram of the image. The contrast adjustment is done by changing the display 

range of the different histogram levels.  

- ‘Watershed’: This button returns the separated particles present on the image 

depending on the grey level chosen using the slider.   

2.2.2. Algorithm function flow 

While developing the algorithm, we kept the non-expert users that will be using it in mind. 

For example, the naming of the buttons is kept as simple as possible. In addition, the buttons 

that are not useful at a given state are kept disabled until the moment they are needed, in order 

to avoid errors. Figure IV-7 contains a flowchart that summarizes the function flow of the 

image-processing algorithm.  

 Upload procedure  

Opening the interface gives only the user the possibility to load an image at first (in addition 

to the option of closing the interface). All the other buttons are kept disabled. After uploading 

the image, the scale button is enabled in order to urge the user to set the scale ratio. After this 

action is completed, all the other buttons are enabled.  

 Region of interest selection 

If the image has different particles, the user generally may want to divide it into different 

regions to process them separately. To do so, he may use the ‘Crop’ button. If there are some 

zones deemed erasable, the user can select such areas and delete them. The ‘Adjust’ button 

gives the possibility to regulate the contrast level of the selected image. If at any point, the user 

is not satisfied by the results of the choice made, he can always reload the original image using 

the ‘Reimport image’ button.  
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Figure IV-7: General flowchart of the image-processing algorithm. 

 Watershed segmentation 

When the region of interest is satisfactorily selected, the user needs to select a grey threshold 

level for the segmentation procedure using the slider on the human-machine interface (the 

threshold level is set to zero by default). Pressing on the ‘Watershed’ button starts the 

segmentation procedure that results into the detection of the edges of the particles. In order to 

reach this goal we use the watershed segmentation method, which is wildly used when studying 

medical (Pham, Xu and Prince, 2000; Atta-Fosu et al., 2016) and material science (Waggoner 

et al., 2013; Myasnikov, 2017) images. A region-based segmentation separates the entire area 

into disjoint portions. When reading an image it considers the values of the pixels as heights 

and transforms it into a topographical image. In a topographical image, we have three types of 

points:  

- Points of minima: if a drop of water is placed on it, it will not move.  

- Basins: If a drop of water is placed on it, it will fall to one single and known minima.  
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- Watershed lines: if a drop of water is placed on it, it can head to more than one 

minima. This line is the border between two regions that we are looking for.   

This procedure is already programmed in Matlab. However, it is left to the user to prepare 

the proper matrix for its input. The raw SEM image needs to be treated before starting the 

watershed processing. The input image for the watershed function needs to be a grey-level 

image from where it can detect the appropriate minima for each particle.  

Figure IV-8 illustrates the different transformations that the raw image goes through and 

the result of the watershed algorithm. First, we apply a filter that cleans the background noise 

and removes all the elements that are connected to the borders of the images. When the user 

selects the region of interest and if a particle touches the border of that selected region, we 

consider it incomplete and this filter helps to remove it and only focuses on the ones in the 

centre. In Figure IV-9, we present two cases to display the results of the filter when a particle 

touches the border and when it does not. We can see that the portion of the particle that touches 

the border is supressed after the filter is applied.  

Then, the image’s histogram is adjusted to increase its contrast. This filter saturates the 

bottom 1% and the top 1% of all the pixels values. At this point, we use the threshold value (Set 

earlier using the slider in the human-machine interface) and make our image binary. The 

resulting image may still contain some defaults referred to as ‘holes’. A hole is a region of 

pixels that does not match its surroundings. A filter is used to correct those defaults and we can 

see the difference between first binary image and the second corrected one, especially when 

examining the central part of the particles.  

At this point, we have a binary image where the particles are in white and the background is 

in black. Only now, we can proceed to apply the watershed segmentation function based on the 

Distance Transform Approach. This approach is regularly used along the watershed function 

(He, Fang and Liu, 2013; Win, Choomchuay and Hamamoto, 2017). It calculates simply the 

distance from every pixel to its nearest nonzero valued pixel. In a binary picture like the one 

we have, the distance transform calculates the distance of every black pixel to its nearest white 

pixel. A white pixel will be replaced in the distance transform result by a zero valued pixel 

since its nearest white pixel is itself. The distance transform will result into transforming the 

binary image into a grey-level image. Only now, we can proceed to apply the watershed 

segmentation function. At the end, we can have three outcomes: a correct segmentation, an over 

segmentation and an under segmentation. The three cases are seen in Figure IV-8.  
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The correct segmentation case gives the accurate borders of the particles in the image and 

the user can proceed to the next steps. Under-segmentation results into detected edges that 

contain several particles within them or contains parts of the background along with the particle 

itself. To correct this problem, the user should increase the threshold and retry the segmentation 

procedure. The over-segmentation has two possible results, either the edges do not cover the 

particle or the edges divide the particle into several portions. The solution for former case is to 

decrease the threshold level and repeat the segmentation process. In the latter case, the user can 

merge semi-automatically the areas until only the edges of the chosen particle correspond with 

its borders. 

 Morphological measurements 

Once the user judges that the detected edges are accurately describing the contour of the 

particle, the algorithm proceeds to opening a new window where, when choosing a particle, the 

user receives its five morphological descriptors, as we saw earlier in Figure IV-3. The 

algorithm also saves the contour of the chosen particle as an image and the measurements in an 

excel file to be used later.  
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          Figure IV-8: Edge detection procedure step by step  
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Figure IV-9: Noise and border cancelation effect. 

3. Third body morphological descriptors 

calculations 

To be able to compare the results between the different tests conducted, we calculate the 

average of each descriptor. To do so we need to fix a minimum number of particles that need 

to be treated from each test to ensure that the average we calculated is applicable on all the 

particles with a certain degree of error. This is slightly complicated to do, in our case, since we 

do not know the total number of particles 𝑛 that is created during each test.  

We choose for our study that the margin of error should not be more than 10% at the 95% 

confidence interval. This means that if we study 100 new particles from test 1, for example, 95 

of those particles should have descriptors equal to the averages calculated with a margin of 

error less than or equal to 10%. The margin of error (MoE) can be estimated using the following 

equation:  
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MoE = Z ∗ √
�̂�(1 − �̂�)

𝑛
 ≤ 10% = 0.1 

The precise calculations are included in Appendix 1. The number of particles 𝑛 that we need 

to analyse from each test is equal to 96 particles. It is the minimum amount of particles to 

guarantee that the margin of error is at 10 % maximum at the 95 % confidence interval. Our 

project aims to study the practicability of linking the rheological and morphological databases 

through machine learning algorithms. Consequently, having a 10 % margin of error is 

acceptable for this study but it is also quite high. Decreasing it is one of the future perspective 

of this study. 

The particle selection method is handled by the user in order to eliminate as much as possible 

the particle/agglomerate confusion that may take place if the selection procedure is fully 

automatic. In fact, if we developed fully automatic algorithms without human intervention, it 

would consider any closed area that has a higher grey level than the fixed threshold as a particle. 

However, this assumption cannot be considered as correct in our case because not moving the 

third body particles after the tests created agglomerates of particles. The agglomerate is a 

number of third body particles that are hard to distinguish them from each other separately, 

because of their spatial distribution when the microscopic images was taken. However, we find 

two main types of agglomerates. In Figure IV-10, we present both types; one that can be used 

in this project and the other that is to be avoided. Figure IV-10.A (left image) is an agglomerate 

that consists of a number of small particles stacked on top of a much larger particle that serves 

as a base for them. This only changes the texture of the underlying particle, but this texture is 

not included in this work. Its shape is intact and can still be considered. However, the 

agglomerate in Figure IV-10.B (right image) is to be avoided because it consists of particles 

that are lying very close to each other (on top of each other in some cases) without leaving the 

possibility to understand where the edge of a particle does start and when its neighbours’ one 

does. Even though such agglomerates are not accounted for when calculating the morphological 

descriptors of the third body particles, their presence can be one other descriptor that may be 

used in future work.  

Even as a semi-automatic procedure, judging whether what we are observing is a particle or 

an agglomerate is a human based decision and remains very subjective. The scale of observation 

of the particles plays a very important role in judging if we are considering a particle or an 
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agglomerate. In Figure IV-11, we demonstrate the significance of the scale of observation. 

Both red squares on the top image and on the bottom image are highlighting the same region. 

In we only had access to Figure IV-11.A (top image), we would judge that this zone contains 

a particle. However, when we zoom more and get Figure IV-11.B (bottom image), we can 

clearly see that it is an agglomerate and not a single particle. It should therefore not be taken 

into account for the analysis process.  

From each test, we gather the morphological information of at least 100 particles both from 

the contact surface on the pin and from the sliding track on the disk. We calculate the average 

of each along with the standard deviation between the values to evaluate their homogeneity.  

 

Figure IV-10: Two types of agglomerates found after the sliding test. 
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Figure IV-11: The scale effect in differentiating between the particles and the agglomerates. 

3.1. Set 1 morphological results 

The linear speed changed between the three tests in set 1. Test 1 has the fastest linear speed 

(𝟎, 𝟕𝟓 𝒎/𝒔) and it goes slower for test 2 (𝟎, 𝟓𝟔 𝒎/𝒔) and slower again for test 3 (𝟎, 𝟑𝟖 𝒎/𝒔). 

This speed modification procedure is explained in Chapter 3.Section 3.Paragraph 1. The results 

of the morphological analysis of the third body particles produced during the three tests are 

presented in Figure IV-12. In the first four descriptors, we display an example of a particle that 

has the average value of that descriptor.  
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Studying the morphological descriptors shows that, except for the elongation descriptor that 

is similar between the three tests, the other morphological descriptors of test 2 are noticeably 

different from the other two tests. The particles from test 2 are less regularly shaped, less round 

and slightly less circular than the particles from test 1 and test 3. Nevertheless, the particles 

from test 2 are much bigger, with respect to area calculations, than the particles from the other 

two experiments. However, the standard deviation shows that the individual measures vary 

considerably inside the same test.  

3.2. Set 2 morphological results  

In set 2, the varying experimental condition is the gaseous environment where the contact 

takes place, using the gas box. The specifications of the box and the procedure are described in 

Chapter 2.Section 3.Paragraphe 3. The two gases used are air in test 4, and argon in tests 5 and 

6. Figure IV-13 summarizes the morphological results as in to the previous section.  

The regularity, the roundness and the area indicators can discriminate between particles 

formed in argon and those in air. Nevertheless, considering that the two tests conducted in argon 

(test 5 and test 6) are in theory identical, the results of the morphological analysis of the particles 

resulting from those two tests vary considerably. For example, the analysis show that particles 

from test 5 are on average twice as big (area wise) as the particles from test 6. However, no 

distinguishable difference between the results of the elongation and the circularity descriptors 

of the three tests in set 2.    

3.3. Set 3 morphological results  

For the tribological tests in set 3, we varied the sliding distance by changing the duration of 

the test itself. We avoided changing the radius of the sliding track or the linear velocity mainly 

in order not to change the vibration levels introduced by the motor. The pin travelled 

for 24 𝑚, 22 𝑚 and 15 𝑚 in test 7, test 8 and test 9 respectively.  

As seen in Figure IV-14, the particles produced during the tests in the third set have the 

same level of elongation and circularity. Yet, the bigger the covered distance, the bigger the 

regularity and the roundness descriptors and the smaller the particle area.   
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Figure IV-12: Morphological descriptors of the particles from Set 1 (the scale displayed is in µ𝑚). 
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Figure IV-13: Morphological descriptors of the particles from Set 2 (the scale displayed is in µ𝑚). 
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Figure IV-14: Morphological descriptors of the particles from Set 3 (the scale displayed is in µ𝑚). 
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4. Conclusion  

In this chapter, we analyse the particles created during the different tribological tests in order 

to gather a number of morphological descriptors. We put in place a standardized process to 

choose which particles are to be considered and how many are needed in order for the analysis 

to be statistically significant.  

We summarize the results in Figure IV-15. Certainly, differences between the tests are 

noted, especially in the regularity, the roundness and the area descriptors. However, there is no 

direct correlation between those variations and the experimental changes. Since no evident 

pattern seems to appear, a new approach based on Machine Learning algorithms will be 

described and used in the next chapter to evaluate its relevance in this context.  

 

Figure IV-15: Morphological descriptors of the particles from all the tests conducted. 
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V. Learning from the 

morphological descriptors 
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Up to this point, we conducted nine different tests under three sets where experimental 

conditions changed each time. During each tribological test, we recorded different signals from 

which we calculated six rheological parameters to describe the test itself. It must be reminded 

that these parameters are not the conventional rheological quantities usually measured with a 

rheometer, but rather consist in a number of parameters that describe the flow of the third body 

particles. Along with the rheological parameters, we chose five morphological descriptors in 

order to characterize the external shape of the third body particles created during the tribological 

tests.  

In this chapter, we evaluate the efficiency of machine learning algorithms, using the 

morphological information available, in: 

- discriminating between the tests, 

- predicting one the rheological parameters recorded. We start by describing the 

algorithms developed.  

Then, we present the findings in each situation. Finally, we regroup all the results in the 

conclusion section.  

1. Database structure 

One of the crucial steps of setting up a machine-learning algorithm is the database and its 

elements. After finishing the experimental phase, we have six rheological measurements 

describing the nine tests and five morphological descriptors to characterize the third body 

particles created during the tribological tests. The database can make all the difference in the 

machine learning results. Therefore, we define the ones used during this project. Table V-1 

presents the exact number of particles studied from each test.  

Table V-1: Number of analysed particles by test. 

Test 1 2 3 4 5 6 7 8 9 Total 

Number of particles 232 109 224 100 124 233 97 99 100 =1318 

Since we have two different questions to answer using machine learning, it is necessary to 

have to different databases to use. A database that is created for machine learning purposes has 

two main type of data; input and output (in reference to the algorithms). The input data in this 

is the morphological database (1318 particles with 6 descriptors each). The output data will 
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however change depending on the objective we aim for. When we are trying to identify the test 

where each particle was created, the output database is the test’s ID. For example, the 232 

particles from test 1 will take the value 1. The 109 particles from test 2 will take the value 2, 

and so on. However, if the machine learning is used to predict the rheological parameter value, 

the output data will be the value of the rheological parameter for every particles.  

For all the algorithms coded, the main database must be divided into two sub-bases: the 

training database and the test database. The training database is 75% of the main database, 

leaving the rest for the test database. From each test, we divide the particles in a random way 

between the two databases. We will remain in a supervised learning methodology, which means 

that each element of the database (particle) is defined by an input (the descriptors) and the 

corresponding output (e.g. the test ID where they were created). 

2. Tribotest identification using the 

morphological data 

In this thesis, we aim to study the relationship between the shape of the particles and the 

rheological conditions of the tribological tests. The algorithm needs to associate the particle 

(input) to a test (output) where it might have been created. Hence, we focus mainly on 

classification algorithms (known also as classifiers): logistic regression and neural networks. 

To judge the efficiency and the accuracy of an algorithm, we calculate the success rate: the 

percentage of the correctly predicted tests.  

The machine learning algorithms were coded using Matlab, the same environment that was 

used for the image analysis work. They follow the flowchart presented in Figure V-1. Step 1 

on the flowchart start by initializing the weights 𝜃 and then changing their values to minimize 

the cost function as much as possible. The algorithms adapt automatically to the size of both 

databases. However, certain parameters, which will be defined in the next sections, are left to 

be changed manually by the user to test their effect. 
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Figure V-1: General flowchart of the machine learning algorithms. 

Both algorithms developed were tested using the MNIST database (LeCun and Cortes, 2010; 

Li Deng, 2012). This database is composed of pictures of handwritten digits and using the pixels 

forming the image of each digit the algorithm needs to identify it. Each image is a 20 ∗ 20 

matrix (400 pixels) and the database had 5000 elements (500 image for each digit from 0 to 9). 

The accuracy of the algorithms is between 95% and 97.5% using both the logistic regression 

and the neural network.  

2.1. Logistic regression  

As explained in the first chapter, logistic regression algorithms are classifiers that predict to 

which class each input belongs, using their features. Since we have more than two tests 

(classes), then our classification is multiclass, and we put in place a one-versus-all 

methodology. The algorithms calculate the probability of the belonging of the particles to each 

test and we associate the one that has the highest score (probability).  

In order to study the efficiency of the algorithms, two variables need to be studied, previously 

specified in Chapter I, section 2.3.2.1:  

- The regularization parameter 𝜆.  

- The number of iterations in the gradient descent algorithm 𝑁𝐼.  

We use the morphological database described before in order to study if those descriptors 

alone are sufficient to predict the test where the particle was made. We start by inspecting the 

outcome of varying the algorithms’ internal parameters 𝜆 and 𝑁𝐼.  
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As we see in Figure V-2, we vary both parameters and compute the success rate of the 

algorithm when applied to the training database and the test database. Studying the different 

plots, we can see that increasing 𝜆 parameter does not always mean having better performing 

algorithms. Besides, the success rate functions hit a plateau when we keep increasing the 𝑁𝐼. 

The combination [𝜆 = 0.01; 𝑁𝐼 = 500] guarantees the best success percentages during both 

the training phase (44%) and the test phase (35%). The success percentage means that the 

algorithm predicts correctly the test from which originates about on particles over three. This 

success rate is modest when compared to common applications of machine learning techniques, 

but remains way above a purely random assessment (it would be one successful prediction over 

nine). Since we have only 44% success rate on the training set, which is deemed low, it is 

interesting to investigate more in the results obtained. 

In Table V-2, we present the success rate for each test from the two databases. Using this 

method showcases that the general success rate of 35% is not shared equally between the tests 

but it is actually an average. The algorithm identifies with good success particles from test 3 

and test 6 but it does not perform as well on the other tests. Moreover, it is unable to identify 

any of the particles from test 8 and 9. In order to check if a certain test is dominating the 

classification procedure, we plot all the labels that the algorithms associate to every particle in 

the test database and the training database.  

Table V-2: Success rate per class for morphological database for the logistic regression classifier.. 

 Training Database Test Database 

Test 1 34 % 19 % 
Test 2 28 % 15 % 
Test 3 76 % 73 % 
Test 4 31 % 8 % 
Test 5 10 % 6 % 
Test 6 92 % 84 % 
Test 7 39 % 32 % 
Test 8 0 0 
Test 9 0 0 

 44 % 36 % 
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Figure V-2: Success rate of the logistic regression classifier when varying 𝜆 and 𝑁𝐼.  

In Figure V-3, we plot the tests attributed to the particles in both the training and the test 

databases. More specifically, each column corresponds to the particles originating from a given 

test, and the colours in this column indicate what test was attributed to these particles by the 

machine-learning algorithm. This is done for both the training and the test databases. Several 

remarks can be noted:  

- Majority of particles from test 1 are mislabelled as particles from test 3, in both 

databases. 

- In the test database, majority of particles from tests 4, 5, 7, 8 and 9 are mislabelled 

as particles from test 6.  

- The percentages in Table V-2 of tests 3 and 6 are confirmed since an important 

number of particles from both those test are correctly classified.  
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Figure V-3: The algorithm classification results per particle per test using: A) the morphological training dataset. B) from 

the morphological test dataset. 

We are inclined to check if there is a correlation between those classification results and the 

five morphological descriptors used in this database. In Figure V-4 and Figure V-5, we plot 

the probability scores calculated by the algorithms and the values of the descriptors of the 

particles respectively from the training and the test database. Those figures are plotted with the 

following protocol: the horizontal axis corresponds to all the particles in the database. They are 

first sorted by the number of the test which created them (leading to the nine sections dividing 

the x-axis). Then, they are sorted in each of these subsets by the score they received in their 

own test of origin (for example, the score that the algorithm gave to a test 4 particle for 

originating from test 4) in a decreasing order. This information is colour-coded, as well as the 
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score the particle got in the other eight tests. This makes the upper part of the figure. In the 

lower part follows the same horizontal sorting for all the particles, buy we provide the input 

values corresponding to the particles in terms of morphological descriptors.  

Studying the results of applying the logistic regression classifier on the training dataset 

presented in Figure V-4, we can note some possible correlations between the morphological 

measurement and the test the algorithm associated to the particle:  

- Particles labelled as particles generated during tests 1 and 3 have low regularity and 

high roundness measurements when compared to the rest of the tests.  

- Particles identified from test 2 are particles with low regularity, low roundness and 

high area values.  

- Particles classified as particles from test 6 have high regularity and high roundness 

levels.  

It is interesting to notice that particles having a good score in test 1 also have a good one in 

test 3, and those scores are highly correlated. It is thus clear that the algorithm has difficulties 

to discriminate between these tests, based on the input database it is using. The same 

observation applies in a lesser extent to tests 2, 4 and 7, which also have similar profiles.  

Examining the results of the classification on the test database shown in Figure V-5, we can 

notice that the algorithms tends to classify the particles with high regularity as particles 

generated in test 6. In addition, the particles that are labelled as particles from test 1 or test 3 

are characterized by their low regularity and high roundness. The particles classified as particles 

from test 2 all share low regularity, high roundness and relatively high area measurements. 

To estimate the effect of each of the five descriptors, we eliminate one at a time from the 

morphological database and evaluate the success rate of the algorithm. In Figure V-6, we 

display the results of this numerical experiment. We can see that the regularity parameter is the 

most important when using a logistic regression classifier since the success rate dropped 

significantly when removing it. It passed from 36 % when using all five descriptors to 27 % 

when removing the regularity descriptor from the morphological database. The ‘WO’ in the Y-

axis on Figure V-6 is an abbreviation for ‘without’. 
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Figure V-4: Logistic regression classification score results and the morphological descriptors values for the particles from the training database. 
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Figure V-5: Classification score results and the morphological descriptors values for the particles from the test database. 
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Figure V-6: Results of removing one descriptor from the morphological database using a logistic regression classifier. 

2.2. Neural network 

We test now the neural network classifier and its ability in predicting the test from where 

each particle came from, using only the morphological database. As mentioned in the first 

chapter, the neural network algorithm will calculate, like the logistic regression classifier, the 

probability for a particle to belong to each test. The test with the highest probability (score) will 

be assigned to the particle.  

In a neural network algorithm, there are four parameters to be determined, described earlier 

in Chapter I, section 2.3.2.2:  

- The regularization parameter 𝜆.  

- The number of iterations in the gradient descent algorithm 𝑁𝐼.  

- The Number of hidden layers 𝑁𝐻. 

- The size of each layer 𝑙(the number of nodes 𝑎𝑖 explained more in the chapter I, 

section 2.3.2.2.) that is 𝑆𝐻𝑙 

The number of hidden layers has been a subject of many researches to enhance the efficiency 

of the neural network algorithms. It was proven that a single hidden layer network with a finite 

number of nodes is capable of approximating ‘any function that maps one finite space to 

another’(Hornik, 1991; Alexeev, 2010). Therefore, we fix the number of hidden layers 𝑁𝐻 at 

1. Adding more layers is kept as perspective for this work if deemed necessary. In addition, 
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since with the logistic regression fixing the 𝑁𝐼 to 500 gives the best results, we keep it at this 

level with the neural network. Therefore, we end up with two parameters to study.  

We evaluate how efficient a neural network algorithm is when using the morphological 

database to classify the particles. We begin by focusing on the two parameters at hand for the 

algorithm 𝜆 and 𝑆𝐻𝑙. 

In Figure V-7, we display the results of varying the two studied parameters and the resulting 

success rates.  Increasing the lambda 𝜆, makes the algorithm better until a certain threshold is 

reached. As we see for 𝜆 = 1 or 𝜆 = 100 the success rate of the algorithm is much lower than 

when 𝜆 is smaller. However, when changing the size of the hidden layer 𝑆𝐻𝑙, the success rate 

of the algorithm hits a plateau at a certain point (just after setting 𝑆𝐻𝑙 = 5).  

 

Figure V-7: Success rate of the neural network classifier when varying λ and SHl. 
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We choose the combination that ensures the highest success rate on the test database, which 

is [𝜆 = 0.01;  𝑆𝐻𝑙 = 5]. This combination resulted into having 39 % and 38 % as success rates 

when applied on the training and the test databases respectively. At this point, we tried changing 

the number of iterations 𝑁𝐼 to verify if 500 was the value that gave us the best success rates on 

the test database. In Figure V-8, we plot the success rates when we only vary the 𝑁𝐼 and keep 

the lambda and the size of the hidden layer at the values that we chose earlier. Even though, the 

algorithm performs better on the training database when 𝑁𝑖 is equal to 1000 and more, the 

success rate of the algorithm on the test database declines. The combination [ 𝑁𝐼 = 500;  𝜆 =

0.0; 𝑆𝐻𝑙 = 5] ensures 39 % and 38 % as success rates when the algorithm is applied on the 

training and the test morphological databases respectively.  

 

Figure V-8: Success rate of the neural network when changing the number of iteration NI. 

Just like with the logistic regression classifier, we study in depth the results of classification 

using the neural network. Table V-3 details the success rates for every class. The algorithm is 

able to classify correctly the majority of the particles from test 2, 3 and 6. However, it is unable 

to identify any particles from tests 5, 7, 8 and 9.  
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Table V-3: Success rate per class for morphological database for a neural network classifier. 

 Training Database Test Database 

Test 1 28 % 17 % 
Test 2 73 % 58 % 
Test 3 63 % 79 % 
Test 4 4 % 8 % 
Test 5 0 0 
Test 6 95 % 95 % 
Test 7 0 0 
Test 8 0 0 
Test 9 0 0 

 39 % 38 % 

In Figure V-9, we plot how the algorithm classifies the particles from each test. We can 

notice that:  

- The algorithm mislabels particles from test 1 as if they were generated in test 3.  

- The algorithm mislabels particles from tests 4, 5, 7, 8 and 9 as particles from test 6. 

To investigate more about those results, we plot the scores of the algorithm associated to 

every particle from the training database (Figure V-10) and the test database (Figure V-11). 

Studying those two figures, we can assume that the algorithm associates some characteristics 

to identify the particles. We can see that the algorithm labels particles with low regularity, low 

roundness and low area measures as particles from test 2. Particles with low regularity and high 

roundness are labelled as particles from test 3. The classifier designates particles with high 

regularity and high roundness as particles from test 6.  
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Figure V-9: The neural network algorithm classification results per particle per test using the morphological database. 

The same test, as with the logistic regression classifier, is performed with the neural network 

algorithm to evaluate the effect of each descriptor in the morphological database. In Figure V-

12 we can see that the elongation and the regularity descriptors are more important than the 

others since their effect is more noticeable. The ‘WO’ in the Y-axis on Figure V-12 is an 

abbreviation for ‘without’. 
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Figure V-10: Neural neurone classification score results and the morphological descriptors values for the particles from the training database 
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Figure V-11: Neural neurone classification score results and the morphological descriptors values for the particles from the test database. 
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Figure V-12: Results of removing one descriptor from the morphological database using a neural network classifier. 

3. Relating the morphological descriptors with the 

rheological data 

Until this point, the output of the machine-learning algorithm was the number of the test from where the 

particle was generated. In this section, we test if the algorithm is capable of predicting the rheological 

measurements from the morphological descriptors of the particles. This changes the nature of our problem 

because we no longer have a classification objective but a regression one. More specifically, we are not asking 

the algorithms to predict a class to which the grains may belong to, but a numerical quantity. The database 

contains all the particles from the tests. It is divided into two sub-bases: the training (75 %) and the test 

database (25 %). The input part of the databases is the five morphological measurements of the database. For 

the output, we choose to use the 𝑅𝐷1 (The average of the friction coefficient after the established regime) but 

the same work can be done for the other rheological measurements (Appendix 2). 

3.1. Linear regression  

Unlike the logistic regression, where the algorithm computes the output from a pre-known set of individual 

values (classes), in linear regression the output is a continuous signal. In our work, the machine-learning 

algorithm using linear regression calculates an estimation of one of the rheological measurements (continuous 

signal) directly through the hypothesis function. Whereas the logistic regression algorithm that calculates a 

probability of belonging to each on of the nine tests (finite set of values) of the particle based on its 

morphological data and assigns the test that has the highest probability. The hypothesis function for the linear 

regression algorithm is the following: 
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ℎ𝜃(𝑋) = [𝜃0 𝜃1 … 𝜃𝑛] [

𝑥0

𝑥1

⋮
𝑥𝑛

] = 𝜃 ∗ 𝑋 

 𝑛 is the number of features (descriptors) used. 

To evaluate how the weights (𝜃) are performing we put in place the following regularized cost function: 

𝐽𝜃 =
1

2𝑚
∑(�̂�(𝑖) − 𝑦(𝑖))

2
𝑚

𝑖=1

+ 𝜆 ∑ 𝜃𝑗²

𝑛

𝑗=1

 

𝑚 is the number of examples in the database 

In addition, we use the gradient descent technique to minimise the cost function by correcting the weights 

of the hypothesis function.  

The main difficulty we face with linear regression algorithms how to quantify its success at predicting the 

output wanted. In a classification problem, it consists in a binary comparison between the predicted output 

and the correct one. For the regression algorithm, we calculate the average of the absolute value of the 

difference between the predicted 𝑅𝐷1 and its correct value. This parameter is named ‘average prediction error’ 

(APE). The lower the value of the APE the better the algorithm is performing.  

In Table V-4, we remind the values of the 𝑅𝐷1 for every test. We remind that the particles from one test 

all have the same values of the rheological measurements since the microscopic images were taken after the 

tests were stopped. 

Table V-4: The 𝑅𝐷1 values for the different tests. 

 

 

 

 

 

 

In Figure V-13, we plot the results of the regression algorithm predicting the value of 𝑅𝐷1 from the five 

morphological descriptors of the particles. We varied the 𝜆 value and printed the average prediction error for 

both the training and the test databases. The peaks we notice in Figure V-13 in the values of the average 

prediction error when 𝜆 = 0.001 or when 𝜆 = 0.004 are not due to a singular error that made the APE value 

rise, but the individual APE is fluctuating significantly higher for those two values of 𝜆, as presented in Figure 

V-15. As we can see in Figure V-14, where we plot the real values of RD1 and the values predicted when 

using 𝜆 = 0.001 (orange line) and 𝜆 = 1 (grey line), the values making the orange plot are more fluctuant 

 𝑹𝑫𝟏 

Test 1 0,44 
Test 2 0,54 
Test 3 0,49 
Test 4 0,26 
Test 5 0,43 
Test 6 0,35 
Test 7 0,29 
Test 8 0,38 
Test 9 0,2 



Page | 139  

than those making the grey one, which explains the high value of their average in comparison to the other 

values of 𝜆. This applies also to explain the peak when 𝜆 = 0.004. 

Just as was the case with the classifier, this general indicator does not work equally well. Table V-5 

contains APE detailed for every test when varying 𝜆. Figure V-15 provide a visual representation of the 

contents of the training and the test database results respectively.  We can note that the algorithm performs 

best on tests 1, 6 and 8. However, tests 2, 4 and 9 have the highest average prediction errors that means they 

are not well predicted by the algorithm. Those conclusions do not change when varying the 𝜆 value even 

though the average prediction error changes in value.   

The linear regression algorithm kept predicting well the particles from test 6 like when we used neural 

network or logistic regression. However, even though it did not predict successfully the same tests as in the 

ones before, we always have a minimum of 3 three tests well predicted. 

 

Figure V-13: The evolution of the APE when varying the values of  𝜆 when using the linear regression technic. 
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Figure V-14: the effect of changing the 𝜆 value for the linear regression algorithm. 

Table V-5: Individual APE for each test when varying the values of λ when using the linear regression technic. 

 
The colour of the cell is darker when the value it contains is higher than the minimum ( 0,01 ). 
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Figure V-15: Individual APE for each test from the training and the test databases when using the linear regression technic. 

3.2. Polynomial regression 

In order to improve the results of the regression algorithm, we change the hypothesis function from its 

linear form to a richer polynomial equation that may be written under the following form:  

ℎ𝜃 = ∑ 𝜃𝑖𝑋𝑖

𝑝

𝑖=1

 

𝑝 is the polynomial order of the equation. 

The same database is used using with this hypothesis function. The input is the five morphological 

descriptors that describe the shape of the particle. The values of the input vector are normalized when they 

pass the 𝑝𝑡ℎ power. It is simply by averaging the values (
𝑋−𝑚𝑒𝑎𝑛 (𝑋)

𝑠𝑡𝑑(𝑋)
). It is a necessary step to keep all the 

input data in the same range when passing them to a bigger power in order for them not to dominate the 

hypothesis function.  

In Table V-6 and Table V-7, we present the average prediction error for the different values of 𝜆 and 𝑝. 

To study more deeply the results we present them in Figure V-16 and Figure V-17. We can notice that there 

is no real improvement in transforming the hypothesis equation into a polynomial function. However, the only 

benefit of using the polynomial regression is correcting the results when 𝜆 = 0.001 and 𝜆 = 0.004. It is 
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noticeable that the two peaks that were present in the le linear regression (𝑝 = 1) are not visible anymore. It 

is also interesting to notice that the results does not improve (in some cases worsen) the higher the degree of 

polynomial is. 

Table V-6: APE for the polynomial regression algorithm for each value of λ and 𝑝 applied on the training database. 

           λ 
 P         

0 0,001 0,002 0,003 0,004 0,005 0,01 0,1 1 10 100 1000 

1 0,067 0,090 0,067 0,067 0,094 0,067 0,067 0,068 0,067 0,069 0,072 0,078 

2 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,067 0,068 0,070 

3 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,067 0,070 

4 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,067 0,070 

5 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,067 0,070 

10 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,066 0,067 0,070 

Table V-7: APE for the polynomial regression algorithm for each value of λ and p applied on the test database. 

           λ 
 P         

0 0,001 0,002 0,003 0,004 0,005 0,01 0,1 1 10 100 1000 

1 0,064 0,090 0,066 0,065 0,097 0,065 0,065 0,065 0,065 0,064 0,069 0,077 

2 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,066 0,069 

3 0,065 0,065 0,065 0,065 0,066 0,065 0,065 0,065 0,065 0,064 0,066 0,070 

4 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,070 

5 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,070 

10 0,091 0,094 0,094 0,090 0,098 0,092 0,090 0,092 0,091 0,085 0,067 0,071 

 

Figure V-16: Plot of the APE values when varying the λ and the 𝑝 when the polynomial regression algorithm is applied on the training database. 
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Figure V-17: Plot of the APE values when varying the λ and the p when the polynomial regression algorithm is applied on the test database. 

4. Conclusion  

We proposed in this chapter different machine learning algorithms to help identify the test where each third 

body particles was generated. This identification method was based on a database of morphological descriptors 

to characterize each particle and rheological measurements of the conducted tribotests.  

In Table V-8, we summarize the different success rates for each of the machine learning algorithms when 

applied on both databases. If we ask a person who is not an experienced tribologist, he will have a success rate 

equal to 11 % (one chance in nine to guess randomly the test). We prove that using machine-learning classifier 

at least triples that success rate.  

Table V-8: Summary of the Machine Learning algorithms used. 

 logistic regression Neural network  

 Training Database Test Database Training Database Test Database 

Morphological 

input database 
44 % 35 % 39 % 38 % 

Using a logistic regression algorithm, we obtained a 36 % success rate on a test database when using a 

morphological database. The generalised 36 % success rate is not shared between the tests. The logistic 

regression classifier distinguishes successfully particles from test 3 and 6 yet it mislabels the majority of the 

particles from the other tests. The algorithm used mostly the regularity and the roundness for its classification: 

Particles from test 3 have low regularity and high roundness and Particles from test 6 have high regularity and 

high roundness.  

We put in place a second classifier based on artificial neural network to compare its performance with the 

logistic regression algorithm. The neural network classifier resulted in a 38 % success rate when a 

morphological test database is used. Similar to the logistic regression algorithm, this general percentage is not 

equally shared between the particles. The algorithm successfully labels particles from tests 2, 3 and 6 and 
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totally mislabels the particles from the rest of the tests. Accordingly, the neural network classifier gives slightly 

better results than the logistic regression counterpart did. It mostly uses three descriptors in order to obtain 

those results. The same relationship between the roundness and the regularity of the particles that was 

discovered when working with Logistic Regression was found. However, particles from test 2 were 

distinguished due to their low regularity, low roundness and low surface calculations.  

The descriptors that seem successful at differentiating between particles are the regularity and the 

roundness. The regularity descriptor effect is evaluated immediately when removing it from the database and 

the considerable loss we had in the success rate when using both algorithms (Figure V-6 and Figure V-12). 

The effect of roundness effect is seen when investigating the results of the classification. Those two descriptors 

will have to be investigated more deeply but they are essential for our work. 

Both elongation and circularity were not exploited by the algorithms to differentiate between the tests. If 

we take a deep look at those descriptors, we find that they vary more than the other descriptors between the 

particles. No pattern could have been found in our work, however this is not a sufficient reason enough to 

eliminate those two descriptors from future databases. A proper investigation for the effect of each descriptor 

must be held in order to know those which could be ignored. 

To assess the success of an algorithm we use, its results on the tests database (the unknown database). 

Based on that quantity, the neural network classifier performed better than the logistic regression classifier 

when applied on the Morphological database but only by 3%. Such a small difference does not justify 

eliminating one algorithm.  

As a second part of this chapter, we present the results of coupling the morphological database with one of 

the rheological descriptors. This means that we trained an algorithm to predict the values of the rheological 

parameters from the morphological database. The results from this attempt were not as easy to interpret as the 

results from the first part. It is no longer a binary result (test correctly identified or not) but we have two 

continuous signals to compare between. The predicted value of 𝑅𝐷1evolves around the average of the real 

value that we want predicted, as seen in the example shown in Figure V-14. We chose to evaluate how correct 

the algorithms results by using the average prediction error (𝐴𝑃𝐸 = |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|). Using 

this evaluation parameter, the results of this part are not as promising as  those obtained in the first part of this 

chapter.   

. In Appendix 2, we present the results of using the other rheological measurements instead of just the 𝑅𝐷1. 

The results do not change much and the algorithm kept providing its predictions around the average value of 

that particular rheological parameter.  
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VI. General conclusion and 

discussion 
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In this document, we present the work accomplished during this thesis. It is a preliminary effort in order to 

build a system that might someday be able to predict tirobological failure in an industrial context based on the 

wear debris created. Only expert tribologists can deduct from a visual inspection of the third body particles 

the contact conditions where they were created. We suggest a proof of concept that machine-learning 

algorithms can succeed in predicting from which test a third body particle was created using a set of 

descriptors. 

In the worst-case scenario, the machine learning algorithms tripled the success rates of a random guess 

when applied on the databases provided. Encouraged by the classification results, we tried predicting one of 

the rheological measurements 𝑅𝐷 using the morphological descriptors of the particles. We trained a linear 

regression algorithm for this purpose. The algorithm kept predicting a value around the average of the 

rheological data set we are predicting. This is explained by the lack of variability in the values of each 

rheological measurement between the particles of the same test.  

Even though this work proves that using machine-learning algorithms to predict the test where a particle 

was created is possible, we cannot yet chose one algorithm over the other due to the very small difference in 

success rates between the two, and many areas should be inspected and explored in a thorough manner.  

The neural networks used were fairly simple since they contained only one hidden layer. In future work, 

we can test the efficiency of increasing the number of hidden layers alongside changing the values of other 

parameters(𝜆; 𝑁𝐼; 𝑆𝐻𝑙) of the algorithm. In addition, our database used for training the classifiers and testing 

their efficiency is not made of an equal number of particles between the tests. Fixing a constant number of 

particles to be analysed from every test should be a priority.  

One other area to investigate more is the different morphological descriptors and the rheological 

measurements themselves. When the accelerometer was installed during the tribological experiments, we 

supervised the movements of the pin, which can be very interesting to study. Accelerometer signals are widely 

used nowadays especially to feed machine learning algorithms. They succeeded at predicting earthquakes in 

a simulated environment (Rouet-Leduc et al., 2017) and at sprint assessment for athletes (Gurchiek et al., 

2019). In Figure VI-1, we can see the accelerometer recordings from a test in air and one in argon. There are 

many features that can be analysed, such as the change in the level of the vibrations between the two signals 

during the stabilisation phase (after the 10 𝑚 milestone), the difference between the movements recorded for 

the three axis of the pin, etc. In addition, the real time video recordings should be examined and be explored 

more deeply. A second camera can be installed to record the entry of the contact or the evolution of the track 

itself away from contact. Additionally, other lenses may be tested in order to zoom in more on certain regions 

and to monitor how the particles behave during the experiment.  

The real time recorded COF (tangential force) signal can be examined with more details for more accurate 

rheological measurements. Calculating the average of the COF may not be the best descriptor of the real time 
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COF recordings. We can see in Figure VI-2 that the average of the average of the COF signal decreases at 

the end of the experiment but this is due to a decline in the instant peaks values found in the real time 

recordings, not a continuous change in the whole interface behaviour.  

the accuracy of the rheological measurements that are based on visual inspection needs to be evaluated and 

examined like the case with the diameter of the contact area on the pin and the width of the sliding track on 

the disk. A more systematic and quantitative way to determine them would bring a better repeatability to the 

analysis.  

 

Figure VI-1: Difference between the real time recordings between a test in Air (Blue signal) and a test in Argon (Orange signal). 

 

Figure VI-2: the average per lap VS the real time recordings of the COF signal. 
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The morphological descriptors we chose until now only describe the 2𝐷 projection of the particles from 

the microscopic images. However, those images are not always sufficient to describe the 3𝐷 nature of the 

third body particles. We can see in Figure VI-2 the difference between the images of the same particle with 

a 11° tilt difference. Almost all the five morphological result are different. In Table VI-1, we summarize the 

set of morphological result for both microscopic images. Adding a descriptor to take into account the missing 

third dimension is mandatory.  

 

Figure VI-3: The tilt effect on the particle representation. 

 

Table VI-1: Difference between the morphological descriptors when the tilt degree is changed. 

Tilt degree Elongation Regularity Roundness Circularity 

0° 0,23 0,86 0,09 0,48 

11° 0,36 0,87 0,06 0,59 

The visualisation scale of the third body particles is a major field that needs to be investigated more in 

future work. This scale is the basis of our judgement in making the distinction between an agglomerate and a 

particle. In Figure VI-4, we can clearly observe more the effect of the scale when we magnify what we 

considered a particle (Top left mage from Figure VI-4) and figure out that it was an agglomerate (Bottom 

right image from Figure VI-4). In our project, we only took into consideration what we judged as particles 

and analysed them to obtain the morphological descriptors. However, the existence of the agglomerates should 

be taken into account to describe the results of an experiment.  



Page | 149  

 

Figure VI-4: The scale of observation effect. 

In our study, we only focused on the shape and the form of the particles from SEM images. One more area 

of improvement for this proposed work is using a second microscope such as the optical microscope. In Figure 

VI-5, we display the same third body particles observed using the SEM and the optical microscope. The 

information obtained are complementary and help have a more complete idea about the particles. The first 

descriptor that comes to mind to add to the morphological database is a texture descriptor.  

 

Figure VI-5: Microscopic image of a batch of third body particles A) from the SEM. B) from the optical microscope. 

The rheological measurements are obtained from the real time signals that describe the totality of the 

tribological experiments. In Figure VI-6, we display the real-time evolution of the COF value during one of 

the tribological tests. It is evident that the coefficient of friction is varying both in time and in space, and that 
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some sections of the disc have characteristic values of friction which are different from those of other sections. 

However, since we do not have a way to estimate an exact time of creation for the third body particles, we 

associate the same COF value (the average of the real time recordings during the stable stage) to all of the 

particles found, which is not accurate. As a solution for this point, we suggest that the experimental procedure 

should be stopped during the tests. Particles that are already in the ejection zone should be analysed since they 

will no longer be reintroduced to the contact and take the value of the COF at that moment of time. This will 

ensure more variability in the COF value inside the particles from the same test. Besides, when analysing the 

final state of the track, the location of each processed particle should be noted in order to establish a connection 

between this particle and the local (not space and time averaged) value of the rheological parameters (e.g. 

local value of the coefficient of friction in this area of the disc). This would tremendously enrich the database 

and lead to a more accurate processing by the machine-learning algorithms. 

 
Figure VI-6: Evolution of the COF value during a sliding test. 

During this thesis, we adapted the pin-disk tribometer to our needs. Some aspects of the experiment need 

to be reinforced, such as the accuracy of the execution of the given instruction for the rotational speed by the 

motor. In addition, the gas chamber was fixed using insulating tape during the experiments and the possible 

leakage was corrected by keeping a steady flow of the gaz. The fixation method should be improved and the 

chamber should be fixed permanently on the tribometer. Even when the experiment does not require a change 

in the gaseous environment, the chamber helps keep the experimental surroundings clean from any foreign 

particles (any tiny particles in the air that are not created during the tribological experiment). .  

As future perspective for this work, we aim to expand the database of the wear debris used to include third 

body particles created through numerical simulation. Simulations to recreate the tribological experiments are 
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in their first steps (Mollon, 2016, 2018). Figure VI-7 shows samples resulting from the present algorithms. 

The simulations are very promising since they offer direct accessibility to both morphological and rheological 

data and through them different flow regimes can be reproduced. However, the simulation scale is very small 

when compared to the contact surface and the numerical results are not experimentally verified yet.  

 

Figure VI-7: Different aspect created through numerical simulations 

This thesis marks one of the building blocks of a much bigger project, where there is an industrial aim. The 

final product should be able to predict machine failure from a database created by combining the rheological 

signals registered using the different sensors installed and the morphological state of the wear debris 

photographed through the cameras that observe the third body particles. Such product will be useful in 

machine monitoring and in planning the preventive maintenance.  
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Appendix 
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Appendix 1: Standard Normal Distribution 

Since we work with the averages of the morphological descriptors (µ𝑖), it is necessary for our study to 

include a statistical element to determine the minimum number 𝑛 of particles that needs to be studied in order 

to have meaningful results. We cannot for example analyse one particles from test 1 and a thousand from the 

other tests. The comparison of the descriptors will not be useful.  

We fix therefore a margin of error (𝑀𝑜𝐸) equal to 10 % at the 95 % confidence interval. The confidence 

interval chosen in itself means that if we were to study a 100 particles from any test, approximately 95 

particles will have descriptor value that is contained in the interval defined by [µ𝑖 − 𝑀𝑜𝐸; µ𝑖 + 𝑀𝑜𝐸]. 

The margin of error has the following formula :  

MoE = Z ∗  √
�̂�(1 − �̂�)

𝑛
 ≤ 10% 

with the variables defined as :  

 𝑍: The value that corresponds to having 95% as a confidence interval.  

 �̂� : The sample proportion. It is the percentage of the population that meets our criteria. 

 𝑛: The sample size we are searching for.  

To determine the 𝑍 value we follow the next steps:  

- Step 1: Subtract the confidence interval value from 100 % to calculate the 𝛼. 

𝛼 = 100 − 95 = 5% 

- Step 2: Convert 𝛼 to the decimal numeral system. 

𝛼 = 0.05 

- Step 3: Divide 𝛼 by 2 

𝛼/2 = 0.025 

- Step 4: Subtract 𝛼/2 from 1 to have 𝑎. 

𝑎 = 1 − 𝛼/2 = 0.975 

- Step 5: Look up 𝑎 in the z-table (red square in the Table below) 

𝑍 = 1.96 for a 95 % confidence interval.  

After determining the value of Z, only two unknown variables remain in the 𝑀𝑜𝐸 equation:  

1.96 ∗ √
�̂�(1 − �̂�)

𝑛
≤ 10% 
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To ensure that we have the maximum 𝑛, we need that �̂� that maximises �̂�( 1 − �̂�), which is �̂� = 0.5. 

Therefore, we have : 

𝑛 ≥
𝑝(1−𝑝)

(
0.1

𝑍
)²

  

  𝑛 ≥ 96 particles. 

This Statistical calculation resulted in determining that we need to analyse at least 96 particles from each test 

in order to ensure that our data respect the 10 % margin of error at the 95 % confidence interval.  

Table 1: Z-table values (in red square is the Z value for 95 % confidence interval). 
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Appendix 2: Predicting the rheological 

descriptors from the morphological database. 

The linear and polynomial regression were used to predict the rest of the rheological descriptors. In this 

appendix, we present the result of this study. The aim of the figures resulting from the linear regression is not 

for individual inspection. It is to show how the predictions, independently from the value of λ, evolve around 

the average f the real values of the rheological descriptor the algorithm is trying the study (learn). We remind 

in Table 1, the rest of the rheological descriptors. In Table 2, we find the value of all the rheological data 

from all the tests.  

Table 0-2: Rheological data description. 

Label Description 

𝑅𝐷2 

Standard deviation of the average per lap 

friction factor in established state (After the 

10 𝑚 mark). 

𝑅𝐷3 
The percentage of the cohesive zone relative 

to the entire contact area on the pin 

𝑅𝐷4 The intensity of the flow 

𝑅𝐷5 The diameter of the contact area on the pin 

𝑅𝐷6 The width of the contact on the sliding track 

 

Table 0-3: Rheological descriptors values per test. 

Test 𝑹𝑫𝟐 𝑹𝑫𝟑 𝑹𝑫𝟒 𝑹𝑫𝟓 𝑹𝑫𝟔 

Test 1 0,11 16 2 1,22 1 
Test 2 0,092 18 2 1,25 1,1 
Test 3 0,055 36 3 0,94 0,87 
Test 4 0,037 12 2 1,25 1,2 
Test 5 0,17 21 3 0,7 0,68 
Test 6 0,123 − 3 0,94 0,72 
Test 7 0,029 20 1 0,9 0,75 
Test 8 0,065 21 2 1 0,7 
Test 9 0,038 35 2 1,2 0,92 
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1) Predictions for 𝑅𝐷2  

1.1) Linear regression results  

 

Figure 1: Results of applying the linear regression algorithm on the training database. 

 

Figure 2: Results of applying the linear regression algorithm on the test database. 
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1.2) Polynomial regression results 

 

Figure 3: Average prediction estimator calculated on the training dataset when polynomial regression algorithms are applied. 

 

Figure 4: Average prediction estimator calculated on the test dataset when polynomial regression algorithms are applied. 
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2) Predictions for 𝑅𝐷3 

2.1) Linear regression results  

 

Figure 5: Results of applying the linear regression algorithm on the training database. 

 

Figure 6: Results of applying the linear regression algorithm on the test database. 
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2.2) Polynomial regression results 

 

Figure 7: Average prediction estimator calculated on the training dataset when polynomial regression algorithms are applied. 

 

Figure 8: Average prediction estimator calculated on the test dataset when polynomial regression algorithms are applied. 
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3) Predictions for 𝑅𝐷4 

3.1) Linear regression results 

 

Figure 9: Results of applying the linear regression algorithm on the training database. 

 

Figure 10: Results of applying the linear regression algorithm on the test database. 
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3.2) Polynomial regression results 

 

Figure 11: Average prediction estimator calculated on the training dataset when polynomial regression algorithms are applied. 

 

Figure 12: Average prediction estimator calculated on the test dataset when polynomial regression algorithms are applied. 
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4) Predictions for 𝑅𝐷5 

4.1) Linear regression results 

 

Figure 13: Results of applying the linear regression algorithm on the training database. 

 

Figure 14: Results of applying the linear regression algorithm on the test database. 
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4.2) Polynomial regression results 

 

Figure 15: Average prediction estimator calculated on the training dataset when polynomial regression algorithms are applied. 

 

Figure 16: Average prediction estimator calculated on the test dataset when polynomial regression algorithms are applied. 
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5) Predictions for 𝑅𝐷6 

5.1) Linear regression results 

 

Figure 17: Results of applying the linear regression algorithm on the training database. 

 

Figure 18: Results of applying the linear regression algorithm on the test database. 
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5.2) Polynomial regression results 

 

Figure 19: Average prediction estimator calculated on the training dataset when polynomial regression algorithms are applied. 

 

Figure 20: Average prediction estimator calculated on the test dataset when polynomial regression algorithms are applied. 
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