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Abstract 

 

The fault gouge, generated by the wear of previous slips, plays a key role in the slip stability 

and weakening mechanisms of a fault. For a sheared gouge, physicochemical transformations 

such as rock dissolution or high-temperature fusion can occur. The latter can give rise to infill 

materials that lodge within the pores of the gouge and strongly impact the mechanical and 

rheological behavior of the fault. Through this thesis work, three 2D models of sheared gouges 

were proposed using the Discrete Element Method for a thorough understanding of : (i) how 

infill materials (matrix or cement) participate in the weakening of the fault during a slip 

reactivation, (ii) the rheological behavior observed through the formation of shear bands and its 

link with the physical and mechanical characteristics of the gouges, (iii) the contribution of each 

of these properties in the breakdown energy and friction laws observed. A first model highlights 

three types of cemented materials with different rheological behaviors and shearing resistance, 

depending on the initial surface percentage of cementation. This study also leads to a redrawing 

of the breakdown energy dissipated by the fault considering the three mechanisms involved in 

gouge shearing: fault dilation, Coulomb friction, and the cemented bond failure. Then, a 

material only consisting of the "matrix" element is modeled to highlight the relationship 

between the intrinsic properties of the matrix and its rheological behavior. The importance of 

the percentage of matrix present within the gouge is evaluated in a third model. Finally, we 

detail an energetic method to link the evolution of each deformation band (Riedel bands) with 

the behavior of the entire gouge. The friction laws resulting from these models can be used in 

larger-scale dynamic models to study fault seismic and aseismic behavior



 

  



Résumé 

 

    o  e de      e   r  e   r  ’   re de   r   de         e e     jo e    rô e  r  o d r    d    

             de       e e    e   e          e  d’          e e   d’  e      e     e    e  e   

 ’ jo  er de   r    or    o         o-chimiques telles que la dissolution ou encore la fusion à 

haute température. Ces dernières peuvent donner naissance à des matériaux de remplissage se 

logeant dans les pores de la gouge et impactant le comportement mécanique et rhéologique de 

la faille. Au cours de ce travail de thèse, des modèles 2D (Méthode des Eléments Discrets) de 

gouges cisaillées ont été proposés pour mieux comprendre : (i) comment les matériaux de 

re        e     r  e     e      r     e   à  '          e e   de         e  or  d’  e r         o  

de glissement, (ii) le comportement rhéologique observé à travers la formation de bandes de 

cisaillement et son lien avec les caractéristiques physiques et mécaniques des gouges, (iii) la 

contribution de chacune de ces propriétés dans l'énergie de rupture et les lois de frottement 

observées. Un premier modèle met en avant trois types de matériaux cimentés montrant des 

comportements rhéologiques et de résistance aux glissements différents en fonction du 

pourcentage surfacique de cimentation. Cette étude donne lieu à un nouveau découpage de 

 ’  er  e de  r    re  o   d r     ro           e       d       e de         e   e   ro  e e    de 

Coulomb et la rupture des liaisons cimentées. Ensuite, un matériau uniquement constitué de 

 ’    e   « matrice » est modélisé pour mettre en évidence la relation entre les propriétés 

   r      e  de       r  e e   o   o  or e e   r  o o    e   ’   or    e d   o r e    e de 

matrice présent dans la gouge est évaluée dans un 3ème modèle. Nous détaillons finalement une 

méthode énergétiq e  er e      de re  er  ’  o    o  de      e    de de d  or    o    e   e 

comportement de la gouge entière. Les lois de frottement issues de ces modèles pourront être 

utilisées dans des modèles dynamiques à plus grande échelle. 

  



 

 



 
9 Contents 

Contents 

 

ADMINISTRATIVE DOCUMENT ....................................................................................... 3 

ABSTRACT .............................................................................................................................. 5 

RESUME ................................................................................................................................... 7 

CONTENTS .............................................................................................................................. 7 

GENERAL INTRODUCTION ............................................................................................. 13 

Motivations ................................................................................................................... 13 
Objectives and outlines ................................................................................................. 14 

CHAPTER 1. STATE OF THE ART AND RESEARCH STRATEGY ........................... 17 

1.1. Foreword ............................................................................................................... 17 
1.2. Earthquakes, faults and rocks ................................................................................ 17 

 1.2.1. What is an earthquake? ................................................................................ 17 
 1.2.2. Fault zone ..................................................................................................... 20 
 1.2.3. Notions in rock and fracture mechanics ....................................................... 23 
1.3. Rock friction and empirical models ...................................................................... 25 
 1.3.1. Theoretical concepts ..................................................................................... 25 
 1.3.2. Stick-slip and friction scaling laws .............................................................. 27 

 1.3.3. Energy budget and dynamic weakening ....................................................... 30 

1.4. The role of granular fault gouge ............................................................................ 31 
 1.4.1. Research Strategy #1: focus on fault gouges mechanics and rheology ........ 33 
 1.4.2. Research strategy #2: study of infill materials ............................................. 39 

 1.4.3. Research strategy #3: Modeling fault gouges .............................................. 41 
1.5. Concluding remarks .............................................................................................. 45 

CHAPTER 2. NUMERICAL MODEL DESCRIPTION AND METHODS .................... 47 

2.1. Foreword ............................................................................................................... 47 
2.2. Discrete Element Modelling (DEM) ..................................................................... 47 

 2.2.1. General contact algorithm ............................................................................ 48 
 2.2.2. Contact laws ................................................................................................. 50 

 2.2.3. Solver and numerical parameters ................................................................. 53 
2.3. Generation of a numerical gouge layer ................................................................. 54 

 2.3.1. Method for granular sample creation ........................................................... 55 
 2.3.2. Three types of granular samples ................................................................... 58 
2.4. Numerical framework ............................................................................................ 60 
 2.4.1. Direct shear modeling .................................................................................. 60 
 2.4.2. Main assumptions of the model ................................................................... 63 

2.5. Concluding remarks .............................................................................................. 69 

CHAPTER 3. SLIP BEHAVIOR OF A SHEARED CEMENTED GOUGE ................... 71 

3.1. Foreword ............................................................................................................... 71 



 
10 Contents 

3.2. Numerical framework and sample generation ....................................................... 72 

 3.2.1. Granular fault gouge sample ........................................................................ 72 
 3.2.2. Numerical setup for direct shear simulations ............................................... 73 

3.3. Cemented material characterization ...................................................................... 76 
 3.3.1. Characterization under biaxial simulations .................................................. 76 
 3.3.2. Comparison to real cemented material and rocks ........................................ 78 
3.4. Influence of the cementation on gouge kinematics ............................................... 79 
 3.4.1. Effective friction and dilation within dense samples ................................... 80 

 3.4.2. Interface failure modes within dense samples .............................................. 82 
 3.4.3. Influence of initial porosity with cementation ............................................. 86 
 3.4.4. Influence of ductility with cementation and porosity ................................... 88 
3.5. Rheology and weakening mechanisms .................................................................. 91 
 3.5.1. Critical dilation ............................................................................................. 91 

 3.5.2. Evolution of weakening mechanisms ........................................................... 93 

 3.5.3. Cemented materials and Mohr-Coulomb theory .......................................... 94 

3.6. Concluding remarks .............................................................................................. 96 

CHAPTER 4. RHEOLOGY AND WEAKENING OF A SHEARED FAULT GOUGE 

WITH MATRIX PARTICLES ............................................................................................. 99 

Main Foreword ............................................................................................................. 99 

Part A – Matrix material and kinematics of Riedel bands ............................................... 101 

4.1. Foreword ............................................................................................................. 101 

4.2. Numerical framework and sample generation ..................................................... 101 
 4.2.1. Granular matrix sample .............................................................................. 101 
 4.2.2. Numerical setup for direct shear simulations ............................................. 102 

 4.2.3. Characterization of matrix material with biaxial tests ............................... 103 
4.3. Matrix characteristics & gouge kinematics ......................................................... 105 

 4.3.1. Qualitative and quantitative results for the reference case ......................... 106 
 4.3.2. Influence of interparticle friction and particle shape.................................. 108 

 4.3.3. Influence of the number of particles within the gouge thickness and Global 

Stiffness 114 
4.4. Discussions .......................................................................................................... 122 
 4.4.1. The orientation angle of main Riedel bands ............................................... 122 

 4.4.2. The combined effect of Shear modulus, number of particles in the gouge 

thickness, and interparticle friction on rheology and weakening mechanisms .......... 124 
4.5. Conclusion of Part A ........................................................................................... 129 

Part B – Granular fault zone with a composite mixture of angular grains and matrix 

particles ................................................................................................................................. 131 

4.6. Foreword ............................................................................................................. 131 
4.7. Model and numerical framework of a composite mixture .................................. 131 

 4.7.1. Generation of the gouge sample ................................................................. 131 
 4.7.2. Numerical setup for direct shear modeling ................................................ 133 
4.8. Rheology of the composite mixture .................................................................... 134 
 4.8.1. Mechanics and Kinematics ......................................................................... 134 
 4.8.2. Influence of fabric and ratio of matrix to angular grains ........................... 137 
4.9. Conclusion of Part B ........................................................................................... 142 



 
11 Contents 

CHAPTER 5. FROM ENERGY BUDGET TO SIMPLIFIED MODELS, TOWARDS 

DYNAMIC SIMULATIONS ............................................................................................... 143 

Main foreword ............................................................................................................ 143 

Part A – Comparison to classical slip weakening .............................................................. 145 

5.1. Foreword ............................................................................................................. 145 
5.2. Method and theory ............................................................................................... 145 
5.3. Comparison between the different gouge materials ............................................ 147 
 5.3.1. Evolution of the slope of slip weakening and breakdown energy .............. 147 

 5.3.2. Critical nucleation length and stability consequences ................................ 150 
5.4. Conclusion of Part A ........................................................................................... 153 

Part B – Energetic study of cemented gouges: a way to friction laws ............................. 155 

5.5. Foreword ............................................................................................................. 155 
5.6. Decomposition of sliding friction – Method ....................................................... 156 
 5.6.1. Breakdown energy partitioning .................................................................. 156 
 5.6.2. A way to friction laws ................................................................................ 159 

5.7. Results & Discussions ......................................................................................... 164 

 5.7.1. Breakdown energy evolution ..................................................................... 164 
 5.7.2. The role of dilation energy ......................................................................... 166 
 5.7.3. Double weakening shape and stress excess ................................................ 169 

5.8. Conclusion of Part B ........................................................................................... 170 

Part C – Time and space evolution of R-bands in a dense granular material ................ 171 

5.9. Foreword ............................................................................................................. 171 

5.10. Opening of R-bands ........................................................................................ 172 

 5.10.1.Method and first results ............................................................................ 172 
 5.10.2.Time evolution of R-bands ....................................................................... 176 
5.11. The inner mechanical behavior of R-bands: towards energetic models ......... 179 

 5.11.1.Friction into R-bands ................................................................................ 179 

 5.11.2.Trajectories and opening of R-bands ........................................................ 180 
 5.11.3.Energetic interpretations ........................................................................... 181 
5.12. Conclusion of Part C ....................................................................................... 185 

CHAPTER 6. CONCLUSIONS & PERSPECTIVES ...................................................... 187 

6.1. Conclusions ......................................................................................................... 187 

6.2. Perspectives ......................................................................................................... 191 

APPENDICES ...................................................................................................................... 195 

Appendices to chapter 1 ....................................................................................................... 197 

A. Collection of Gouges ........................................................................................... 197 

Appendices to Chapter 2 ...................................................................................................... 201 

A. Time step (adaptative vs constant) ...................................................................... 201 
B. Generation of matrix particles ............................................................................. 201 
C. Initial porosity and state of density ..................................................................... 202 
D. Circular vs angular particles ................................................................................ 205 



 
12 Contents 

Appendices to Chapter 3 ...................................................................................................... 207 

A. Numerical stiffness influence .............................................................................. 207 
B. Reproducibility .................................................................................................... 208 

C. Results tables for cemented materials ................................................................. 209 

Appendices to Chapter 4 ...................................................................................................... 211 

A. Representative Surface Element (RSE) ............................................................... 211 
B. Gouge thickness .................................................................................................. 212 
C. Shear modulus calculi and graphs ....................................................................... 212 

D. Mechanical behavior of a bi-disperse mixture .................................................... 213 

Appendices to Chapter 5 ...................................................................................................... 215 

A. Weakening slope (Part A) ................................................................................... 215 
B. Empirical parametric laws (Part B) ..................................................................... 219 
C. Simplified model validation (part B) ................................................................... 221 
D. Method to measure shear bands aperture (part C) ............................................... 223 
E. Thin bands results (Part C) .................................................................................. 225 

NOMENCLATURE ............................................................................................................. 229 

REFERENCES ..................................................................................................................... 233 

 

  



 
13 General introduction 

General introduction 

Motivations 

During natural earthquakes, frictional sliding releases the stresses accumulated in the pre-

stressed surrounding medium of a fault. Depending on the pressure and temperature conditions 

due to the depth of the fault, rupture processes can take place: slowly and continuously, 

reducing the probability that a seismic instability occurs or in a fast and brutal manner which 

can generate strong seismic sliding. There also exist induced earthquakes, governed by the same 

physical laws, but partly generated by geoengineering technologies and infrastructures that can 

modify the surrounding stress field of a fault. 

While urban models are increasingly rethought to respond to population growth and energy 

transition, it is important to have sustainable and reliable energy production with low impact 

on the environment and human beings. Enhanced Geothermal Systems (EGS) lie in the 

temporal continuity of the production compared to other renewable energy sources such as solar 

or wind power, which depend on climatic conditions. They could help meet energy demand but 

appear to be a controversial issue due to the induced seismicity observed in some projects 

(Grigoli et al., 2017). In order to promote the economic viability of geothermal extraction, EGS 

are generally located on deep rock reservoirs corresponding to depths of 3 to 5 km [(Gentier, 

2013), (S.-M. M. Lu, 2018)]. At this depth, fault networks are already present and subjected to 

high stresses reducing the permeability of host rocks. Hydraulic stimulation is often used to re-

open existing fault systems and improve fluid transport capacity. Although techniques are 

available to reduce the increase in pore pressure generated by the introduction of fluid, the 

effective stress is still reduced within the fault, which may induce fault rupture and re-activate 

slips in the existing fracture network. The slips generated can either be aseismic (slow slip 

(Cornet, 2016)  or  e      w    “  d  ed    ro- e        ” (Talebi & Cornet, 1987). Even if 

the magnitude is generally smaller than for natural earthquakes (𝑀𝑤 < ~3), tremors can be felt 

at the Earth's surface (Bourouis & Bernard, 2007). These tremors remain perceptible most of 

the time and lead to negative reactions from the inhabitants who stand out against this energy 

(Majer et al., 2007). Recently, the relation between scientists working EGS, and citizens living 

near the EGS project of Strasbourg in France was questioned and reported in an interesting 

Master Thesis, directly associated with the present Thesis, as a socio-political understanding of 

the research on EGS and induced-seismicity, (Voisin, 2020). 

The fault gouge, identified as the wear material of previous slips, contributes to friction stability 

(Marone & Scholz, 1988) and plays an important role in the sudden energy release during 

seismic sliding (Sammis et al., 1987). The number and amplitudes of successive slips occurring 

within the gouge reduce the size of particles towards a fractal distribution, which also reduces 

pore spaces [(Sammis & Biegel, 1989), (Blenkinsop, 1991), (Muto et al., 2015)]. Within a 

mature fault gouge, mineral cementation coming from rock dissolution, melting, or matrix 

particles from previous slips fragmentation, can fill remaining pore spaces between particles 

and change the global state of cohesion (Philit et al., 2018). These phenomena give birth to a 

new, stronger granular material combining its history, the state of initial density (i.e. porosity 
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within the sample), and infill material present within the granular fault gouge (Schellart, 2000). 

Through this Thesis work, properties of infill materials, which could have been formed on the 

    d’          re    e      ed    we        e r      e  e  o   e         d   . This work is based 

on previous research done on deep geothermal energy systems considering slip reactivation in 

fault zones where fluid may have flowed and on research on fault gouge mechanics. The role 

played by the fluid itself will not be considered. The results can be either used within the deep 

geothermal community, as a post or pre-installation state of deep geothermal power plants or 

within the seismic fault community since they obey to the same basic principles without fluid. 

My thesis work was carried out in the LaMCoS Laboratory (Contact and Structural Mechanics 

Laboratory), team TMI (Tribology and Interface Mechanics) and at GEOMAS Laboratory 

(Civil Engineering Laboratory) at INSA Lyon. We also exchanged a lot with the BRGM 

through Arnold Blaisonneau, Julie Maury and Théophile Guillon. 

Objectives and outlines 

The main objective of this thesis is to study the behavior of infill materials in faults at depths 

close to those observed in deep geothermal energy systems. However, we have restrained our 

work to dry friction. We have chosen to focus specifically on numerical granular physics to 

study the behavior of fault gouges within the fault core. For that purpose, we will address and 

answer the following questions all along the report: 

• Which role plays cementation in the weakening of mature fault gouges? Do cemented 

materials promote slips in faults? How can the energy balance of a cemented gouge be 

decomposed and what mechanism remains most influential? 

• Which role plays the matrix particles in the weakening behavior of mature fault gouges? 

How important are the different physical and geometric characteristics of matrix 

particles in the slip behavior? To which extent is there an influence on the proportion of 

matrix/grain and their distribution in the fault gouge samples? 

Based on the main questions mentioned, a few more questions need to be addressed:  

• How can the characteristics of the fault gouge material be related to its rheological 

properties? Which type of Riedel patterns are observed and with which orientation? 

• Which friction law better represents the behavior of a cemented granular fault? And 

what frictional models can be used in modeling a dynamic slip?  

• How the behavior of each shear band observed in a fault gouge can be related to the 

overall behavior of the gouge?  

This report thesis is structured into five Chapters reported in the following and schematized by 

Figure 1: 

• Chapter 1 gives an overview of the basics of earthquake, fault mechanics as well as the 

study of friction in faults and empirical models used. It also focuses on the properties of 

the fault gouge whose mechanical and rheological characteristics are key elements in 

the understanding of the sliding mechanisms of a seismic fault. This chapter also 

presents the research strategy adopted for the work. 

• Chapter 2 describes the numerical models and methods. It starts by presenting the main 

concepts of DEM, the code used as well as all parameters and contact laws necessary 
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for the model. It ends with a global description of the 2D direct shear fault models used 

and the main assumptions and choices we made for these models. 

• Chapter 3 focuses on the modeling of a sheared granular fault with cementation. A link 

is established between the micro-mechanical and structural properties of a cemented 

gouge layer, and its rheological behavior under shearing. The last section offers a 

discussion on new insights and relations between cementation within the gouge, shear 

localization, and the relevance of Mohr-Coulomb theory for fault models. 

• Chapter 4 focuses on the modeling of a sheared granular fault with matrix particles. The 

  r     r   o   e  o     o o e eo    ode  re re e             e “   r  ”    er    

alone allowing to study the evolution of shear localization (Ridel bands) as a function 

o    e   r  e er  o          r    o  e    e  e o d   r  re re e      “ r    /   r  ” 

model that highlights the importance of the matrix percentage within the fault gouge, 

especially from a rheological point of view. 

• Chapter 5 represents a second objective of this research, which is to link micro-

mechanical models at the grain scale (what we model) and dynamic models at the fault 

scale (what we want to participate in). Thanks to the numerical models carried out, the 

extracted friction laws, and the energy balance of the studied fault gouge patch, we 

generate simplified friction and energetic models which can then be injected into larger-

scale dynamic models. 

 

Figure 1. Main schema of the Thesis. 
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Chapter 1. State of the Art 

and Research strategy 

1.1. Foreword 

In the first two parts, this chapter gives an overview of the basics of earthquake and fault 

mechanics as well as the study of friction in faults and empirical models used. These concepts 

are quite well known, so the advised reader can start reading directly from part 1.3 which 

focuses on fault gouge properties whose mechanical and rheological characteristics are key 

elements in the understanding of the sliding mechanisms of a seismic fault. This third part 

focuses in particular on the research strategy adopted for the thesis. 

1.2. Earthquakes, faults and rocks 

1.2.1. What is an earthquake? 

When the energy accumulated in the fault reaches the critical stress allowed by the material, 

the fault suddenly slips and releases the energy resulting in the main seismic shock. The stress 

excess is then reduced via energy liberation enabling to accommodate the large-scale motion of 

  e e r  ’      e   The stress drop only concerns shear stress and was estimated to be about ~1-

10Mpa in natural faults for large earthquakes (as opposed to larger values in the lab), (Kanamori 

& Brodsky, 2004). This stress drop mechanism is then repeated during geological time as a 

succession between shear stress accumulation (interseismic period) and shear stress drop 

(coseismic period), forming the basis of the seismic cycle (Byerlee & Brace, 1968). 

Plates tectonics 

An earthquake can also be presented as a plate motion, or sudden displacement of the crust 

inducing the propagation of elastic waves (Kanamori & Brodsky, 2004). The understanding of 

plate tectonics and its relation to earthquakes only appe r      e       w      e “    e  e  o    

re o    o ”     w    o  d        e d   r     o  o   e         w    o      o   ed   o    e  o    

plates boundaries while important earthquakes use to be observed along subduction zones (i.e. 

the frontier between two converging plates) as presented in Figure 2. Nowadays, geodesy 

technics let us measure the size and shape of the earth's surface, using Global Positioning 

Systems or Satellite Interferometry. All of these methods give access to patterns of crustal 

movements (cm/year for example) and strain accumulation within plates and make appear 

larger movements at the plate boundaries than in plate interiors (Uyeda, 1978). 

The size of earthquakes can be measured posterior to an event thanks to their magnitude 𝑀𝑤 

obtained from the seismic moment 𝑀0 (Wyss, 1970), itself determined from seismic data (wave 

amplitude and normal modes), geodetic data (GPS, InSAR), or geological data (surface break 

of the fault), (Kanamori & Brodsky, 2004). 
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Figure 2. World seismicity map: ISC-GEM catalog of about 42,000 earthquakes (version 8.0). The earthquake 

selection is based on magnitude Mw 5.5 and above, between 1904 and 2017. The earthquakes recorded take place 

at the boundaries betwee  r   d     e  o    e   r  ’    r   e      o    ro  (Agnew, 2014) and image from ISC-

GEM (Di Giacomo et al., 2018).  

Induced earthquakes? 

In addition to the previous definitions of earthquakes, it is also interesting to mention induced 

seismicity. When the released strain energy is predominantly from natural origin but was 

provoked by a human action we talk about triggered seismicity and when most of the energy is 

anthropo e      e word “  d  ed”      ed  Now d            w      e r  e   o o  e    d 

infrastructures for geo-applications can modify the surrounding stress field of a fault or add 

new variables into the global system. These stress changes can be due for example to a decrease 

   dro  r o  e  r    o …  or    re  e        e  eo  er        e      dr       r    r   …  

of fluid pressure in the subsurface and can be a source of seismicity. (Grigoli et al., 2017) 

present the industrial activities responsible for induced seismicity (Figure 3 (b)) and their 

physical mechanisms. We number lots of cases of induced seismicity all over the world, Figure 

3 (c), gathered by HIQuake (Human-Induced earthquake) database (Wilson et al., 2017). 

Slow or fast earthquakes? 

As the seismic cycle is complex, a wide range of earthquakes exists from slow to fast slip events 

[(J. R. Leeman et al., 2016), (Stefanou, 2020)], seismic or aseismic motion [(Bourouis & 

Bernard, 2007), (Chen & Lapusta, 2009), (Cornet, 2016), (McGarr & Barbour, 2018), (Chen & 

Lapusta, 2019)], or large to small events. A distinction must be made between fast and slow 

earthquakes: 

− Fast earthquakes mostly present seismic and unstable slips, with a large number of 

seismic waves radiating during a few instants (seconds to minutes). High rupture fronts 
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velocities are recovered around 3 km.s-1 and are superior to 3.5 km.s-1 for supershear 

earthquakes (Passelègue et al., 2013). 

− Slow earthquakes (i.e. Slow Slip Events (SSE)), more recently discovered thanks to 

better GPS technics, have lower involved rupture fronts velocities (Bürgmann, 2018) 

and present less or negligible radiated energy. Their time duration also varies from a 

few days to years. The formation of slow slips can be due to several factors or 

phenomena within a wide range of depth and temperature but the presence of both high-

pressure fluids and heterogeneous fault-zone structure/composition/assemblage seems 

to be needed. Changes in fluid pressure, for example, or in the coefficient of friction can 

switch sliding regimes from seismic to aseismic (Bürgmann, 2018).  

 

Figure 3. (a) Induced seismicity: the different types of industrial activities. Image from (Grigoli et al., 2017) (b) 

Location of the induced earthquakes within the Earth with their associated magnitude, (source: Davies et al. 

[2013]), updated until August 2016, (each type of industrial activity is represented by a particular color). The 

picture presents declustered seismic sequences with only the maximum magnitude of the sequence (if ML >1.5). 

Image from (Grigoli et al., 2017).  

There is still a debate on scaling laws, on whether slow and fast earthquakes are controlled or 

not by similar dynamic properties (Michel et al., 2019). The understanding of the different 

(a)

(b)
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behaviors between fast earthquakes and SSE is relevant for fault mechanics, as it can indicate 

how and why a slip may be initiated or not at a critical frictional stress (Scholz, 2019). For more 

details on seismicity (seismic and aseismic motions), and the size of events, the reader may 

refer to [(Bürgmann, 2018), (McGarr & Barbour, 2018), (Scholz, 2019), (Stefanou, 2020)]. 

Both natural or induced earthquakes need a fundamental understanding of fault and rock 

mechanics. Mechanisms of failure in intact rocks or slips in pre-existing fault networks need 

to be well understood to reduce earthquake hazards and develop safer geo-energy activities. 

In the Thesis, we will apply the seismic cycle at a smaller scale of fault rupture, and focus 

on the role of fault zone internal structure within the schizosphere part of the Earth. In the 

next sections, we will present the fault zone structure observed, and the basics of the fault 

and rock mechanics needed to study fault slip behavior. 

1.2.2. Fault zone 

When talking about earthquakes, it is also essential to define what a fault is. One may first think 

of the well-known natural faults, such as the San Andreas Fault (F. Chester et al., 1993), but 

the variety of geological variables (lithology, displacement, depth, pre-e           r  …  

present within the Earth leads to a wide range of different types of faults and internal fault zone 

structures that also depend on the depth of formation, tectonic environment, protolith, and 

hydrothermal context. 

Brittle-plastic transition: faults and deformation 

The lithosphere is the only place where earthquakes can happen as generally, no earthquake 

happens within the asthenosphere or beyond. Stresses applied to the lithosphere induce 

deformation of crustal rocks that transform and store elastic energy. Depending on the tectonic 

context and stress state, it exists three main types of faults: (i) normal faults, corresponding to 

an extension of plates, quite rare on the continental crust (New Madrid fault zone), (ii) Reverse 

fault, or thrust faults which are derived from a compressional tectonic context (Main Himalayan 

Trusts) and (iii) the strike-slip fault or transform faults, derived from lateral sliding along a 

vertical plane (North Anatolian fault). Figure 4 schematizes the evolution of rocks' behavior in 

the lithosphere as a function of temperature and pressure. As in rock mechanics, any type of 

deformation will first admit a reversible elastic deformation (linear stress-strain dependence) 

then once the yield stress (elastic limit) of the material is passed three main regimes are 

observed: 

− The first 10 km from the surface, or the upper layer of the lithosphere (i.e. schizosphere), 

generally deform in a brittle manner. Of course, it depends on the temperature and pressure 

conditions. Irreversible deformations such as rupture or localizations are observed after 

reaching the yield stress point: microfractures (Scholz, 2019), which first form and gather 

to create a macroscopic fault, gouge particles (Scholz, 1987), as a consequence of rock 

fragmentation, or even asperity ploughing (Scholz & Engelder, 1976) can be observed 

during shearing. This brittle mechanism also implies an increase of the rock volume (i.e. 

dilatancy). 

− The bottom part of the lithosphere (i.e. plastosphere) is considered as a ductile zone. It 

belongs to the so-called "plastic" regime where the rock can deform irreversibly within a 
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deformation band (shear zones) or in a more distributed way. Then, we tend either towards 

stabilization of the stress characteristic in a stable flow or towards hardening by 

deformation. This regime is thermodynamically promoted at high pressures and 

temperatures. The high ductility in the plastosphere also leads to a decrease in rock strength 

(Brace & Kohlstedt, 1980). 

− Between these two regimes, a semi-brittle regime exists as a mixture between brittle and 

crystal plastic processes. This is the so-    ed “ r    e-       ”  r      o  (Byerlee & Brace, 

1968), promoted by pressure and temperature increase. 

 
Figure 4. (a) Stress-strain representation of brittle-plastic behaviors, curves exhibit (1) elastic deformation 

followed by rupture, (2) elastic deformation followed by plastic deformation and then by rupture or (3) elastic 

deformation followed by plastic deformation with viscous flow or hardening. (b) Evolution of the behavior of 

rocks in the lithosphere as a function of temperatures and pressures. The brittle-plastic transition mostly depends 

on temperature (increase in ductility with temperature), pressure (ductility increases with applied stresses), and 

velocity rate (rapid tests show more brittle behavior and slow tests show more ductile behavior). It should also be 

noted that the water content influences the strength and deformability of rocks. Image modified from (Jérôme 

Aubry, 2019) 

Internal structure from brittle zone 

Even if many models propose a planar representation of two fault surfaces in contact, the reality 

is obviously more complex. The internal structure of fault zones subjected to external loads and 

strain rate is progressively damaged by the earthquake cycle and shearing. The investigations 

[(F. Chester et al., 1993), (Rice & Cocco, 2002), (Billi et al., 2003), (Wibberley et al., 2008), 

(Faulkner et al., 2010), (Scholz, 2019)] on this internal structure and data collected on faults 

that have already been sheared several times, propose a large scale fault zone model displayed 

in Figure 5. For the sake of simplicity, the model described here in detail is a one-core fault 

zone structure, but multiple cores models have also been discussed (Faulkner et al., 2003). The 

fault can be divided into different, more or less damaged zones, Figure 5  (a) & (c): 

1) The core zone, or fault core, is the contact interface of the fault where slip is localized 

on one or several principal slip surfaces. It is composed of pulverized rock material 

described as a layer of granular material. The fault core can be separated into two parts: 

the first one is the Principal Slip Surface (Rice, 2006), generally, fault gouge (Woodcock 

& Mort, 2008), which is the central zone with a thickness inferior to 1 - 5 mm (Rice & 
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Cocco, 2002). It has lost the original cohesion of the load-bearing rocks. This gouge is 

surrounded by zones of breccia with coarser particles on both sides or one side of the 

fault gouge (brecciation process), Figure 5 (b). Frictional heating can also melt the 

interface, resulting in a fault core mostly composed of pseudotachylyte [(Sibson, 1977), 

(Di Toro et al., 2009)]. The fault core contributes to friction stability (Marone & Scholz, 

1988) and plays an important role in the sudden energy release at the onset of seismic 

sliding (Sammis et al., 1987), (cf section 1.4.1). 

2) The highly fractured damage zone, of 1-100m thickness (depending on the history of 

previous slips), envelops the core zone. This damage zone is deformed by seismic waves 

release. It can be composed of foliated and non-foliated cataclasites (granular material) 

and is generally assumed to be highly permeable regarding the amount of porosity 

[(Faulkner et al., 2010),  (Rice & Cocco, 2002)]. 

3) Finally, the quasi-undamaged host rocks are submitted to the external load. They are 

protected by the inner fault zones which take all the deformation and release energy. 

The host rock type, stress and strain rate, deformation mechanisms, or fault architecture 

also influence the permeability of the fault which is a key parameter for fluid pressure 

distribution and volume characterization (for Geo-engineering applications for 

example). 

 
Figure 5. Typical fault zone structures. (a) Schema of fault zone for strike-slip faulting. The core zone consists of 

fault gouge and fault breccia. The damage zone consists of foliated and non-foliated cataclasite and fractured host 

rocks. The red arrows show the shear stress acting on the host rock. Image modified from (Lin & Yamashita, 

2013). (b) A narrow zone of fault breccia and cataclasite in a quartzitic parent rock. Buzios, Rio de Janeiro States 

SE Brazil. Width of view 4 mm. PPL. From (Trouw et al., 2009). (c) Photomicrographs in plane-polarized light 

from the internal structure of the Keumwang fault zone, images from (Lee & Kim, 2005) 

The large-scale model presented here describes highly slipped fault zones named as 

mature faults by (Rice & Cocco, 2002), and we will use this definition in the rest of the 

Thesis. It is important to specify that most of the variables influencing fault zone are scale-

dependent and that the sum of all these scale-dependent variables leads to a very complex 
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mechanism. Fault zone needs to be both studied at small and large scales if we want to 

understand the entire mechanism. The seismic or aseismic character of a fault greatly 

depends on this fault zone anatomy [(Scholz, 2002), (Wibberley et al., 2008)] but is also 

controlled by fault frictional properties, which are essential to determine the way the fault 

behaves between stable or unstable slips (cf. section 1.3). Now that we have defined what 

an earthquake and a fault are, it becomes interesting to detail rock mechanics mechanisms 

to understand the internal phenomena occurring just before a rupture. 

1.2.3. Notions in rock and fracture mechanics 

         ’   e    

For any real loaded material, imperfections can exist within the microstructure (i.e. fracture, 

   er   e    r  k…   re       o      re    o  e  r   o   w        e    er                e   r   

to seismic nucleation (Wibberley et al., 2008). The notion of fracture mechanics was introduced 

by (Griffith, 1924), in order to explain the phenomenon of fracture and propagation. From this 

definition, three different failure modes can be observed [(Lawn, 1993), (Scholz, 2002)]: Mode 

         ed ‘ e    e  ode’    e  o e      ode    ode         e ‘ o     d      ode’    e    -plane 

shearing), and mode III is the transverse shear (i.e. antiplane shear), Figure 6. However, 

 r       ’ e     o       o     red      e         o   o   o     r  k    d the equations related to 

each mode present a nonphysical behavior: infinite stresses at the crack tip. To face this 

problem, the general concept of fracture energy 𝐸𝐺  was introduced by (Irwin, 1957) as the 

energy to fracture the entire material (as opposed to G, energy for a single crack creation), (cf. 

section 1.3.3). More details on the associated equations, stresses, and energies can be found in 

(Scholz, 2019). The energy released by crack propagation in rock generally increases with the 

length of the fault, until a state of equilibrium is reached (i.e. for critical stress). This maximum 

strength, or resistance to cracking, depends on the grain size and stress singularities appearing 

at the edges of the crack. 

 
Figure 6. Sketch of the three main crack propagation modes: Mode I, opening or tensile mode (the tensile, or the 

crack displacement is normal to the crack), Mode II in-plane shearing (crack displacement in the shearing plane 

and normal to the crack edge), Mode III, antiplane shear (crack displacement in the shearing plane and parallel to 

the crack edge). Image from (Scholz, 2002). 

Principal stresses and failure criteria 

Friction and fracture patterns show different characteristics (Lockner & Beeler, 2002) and need 

criteria to quantify the critical stress and strength needed for the different mechanisms involved. 

The stress field observed on both the upper crust or a piece of rock submitted to an external 

load is defined by its principal stresses σ1 and σ3 (in 2D). These stresses come from the 

eigenvectors of the stress tensor and represent the normal stresses applied on two properly 
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oriented orthogonal facets. Figure 7 (a) presents a relevant type of rock rupture observed for 

brittle rocks, with oblique sliding with respect to the maximum compression direction (2D). By 

convention in rock mechanics, positive stress values are compressional and it is assumed that 

σ1 and σ3 are positive in the Earth. The equilibrium condition of a small element subjected to 

stresses in 2D gives the following equations, with 𝜏 the shear stress and 𝜎𝑁 the normal stress 

on the fault plane, and 𝛽 the angle between the shearing plane and the major principal stress 𝜎1: 

𝜏 =
(𝜎1 − 𝜎3)

2
sin(2𝛽) (1.1) 

𝜎𝑁 =
(𝜎1 + 𝜎3)

2
−

(𝜎1 − 𝜎3)

2
cos(2𝛽) (1.2) 

     re  r  er   were   r   de    ed  or   e   re     o  “       ro k”     o  o ed  o o  er  r     r 

material found in the crust or fault as a granular gouge. Considering intact rock first, the rock 

strength is generally considered to follow the Mohr-Coulomb failure criterion [(Handin, 1969), 

(Jaeger, 1971)], which states that the maximum tangential stress 𝜏𝑚𝑎𝑥 that the material can 

withstand is the sum of a constant term "𝐶"   e er         ed “ o e  o ”    d     dd   o     er  

𝑡𝑎𝑛𝜑   e er         ed “ oe     e   o     er     r    o ”          ed      e  or      re    

𝜏𝑚𝑎𝑥 = 𝐶 + 𝜎𝑁 tan(𝜑) (1.3) 

𝜇𝑓 = tan(𝜑) (1.4) 

𝜑 being the internal friction angle of the material, or angle between the failure surface (i.e. 

envelope) and the horizontal axis when drawn in a Mohr plane. Figure 7 (b) shows the stresses 

represented in a Mohr plane. It is possible to construct what we call the failure envelope, or 

envelope of points defining failure for specific range or shear and normal stresses. Considering 

a cohesionless material, the C value is null and the failure envelope passes through the zero-

stress value. For more details on failure criteria, the reader can refer to [(Lockner & Beeler, 

2002), (Jaeger et al., 2007)]. 

The cohesion value C can be easily determined with Biaxial or Triaxial experiments for a 

specific temperature, pressure range, and loading rate [(Sammis et al., 1986), (Marone & 

Scholz, 1989), (Marone, 1998), (Noël et al., 2019)]. During these tests, the specimen is 

subjected to both an axial compressive stress (force exerted on the top of the specimen) and a 

radial confining pressure (exerted by a fluid on the walls of the specimen), Figure 7 (a). Several 

tests may be carried out on the same sample, to consider the history of stresses. Hubbert-type 

shear box can also be used to determine the extrapolated cohesion and friction coefficient 

(Abdelmalak et al., 2016). If pore fluid pressure 𝑃𝑓 is present within the fault, the same Mohr-

circle representation is possible but considering effective pressure instead of normal stress 

(𝜎𝑒𝑓𝑓 = 𝜎𝑁 − 𝑃𝑓). 

From Mohr-Circles representation, it is possible to relate 𝛽 to the internal friction angle 𝜑. 

Major and minor principal planes can be observed during shearing and each point of the circle 

represents a fault orientation. The combination of the previous equation and trigonometrical 

relations enables to link the fault plane orientation angle to the coefficient of internal friction: 
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2𝛽 =
𝜋

2
− 𝜑 (1.5) 

 
Figure 7. (a) Schema of stresses applied on a representative volume (biaxial (2D) compression test), with major 

stress 𝜎1, minor stress 𝜎3 applied on the rock sample and resulting tangential and normal stresses 𝜏 and 𝜎𝑁 applied 

on the fault plane. 𝛽 is the angle between the principal stress and the fault plane and 𝜓 the angle between the 

principal stress and the normal stress (b) Mohr-circle with stress representation and angle relations, shear stress 𝜏 

as a function of the principal stresses applied on the volume. 

All these definitions allow us to describe the large-scale behavior of a fault and its 

formation (rupture tip), i.e. the state of limit stress that a fault can support as well as the 

type of rupture (brittle, semi-brittle, plastic) observed. However, fault mechanics is also 

played out on a smaller scale, and by considering the properties of the contact between the 

two rock walls of a fault. The way the walls slide against each other primarily depends on 

the frictional properties of the materials. We explore in more detail the frictional and 

energetical contact theories in the next subsection. 

1.3. Rock friction and empirical models  

From a physical point of view, friction is described as a resisting force opposed to the relative 

displacement between two contacting surfaces. Friction is the focal point of tribology (the 

Science of contacts), but it appears to be present wherever a contact is observed between two 

different bodies. Rock and fault mechanics are not exceptions, and also assign a great 

importance to this parameter that acts at different scales (Jaeger et al., 2007). This section 

presents some methodological elements to study and model faults sliding using tribological 

concepts. 

1.3.1. Theoretical concepts 

Leonardo Da Vinci brought the first bases of friction and resistance to motion in the 15th 

century. Two centuries later in France, Amonton studied the characteristics of two contacting 

bodies and proposes that (i) the friction force is independent of the size of the contact surface 

and the second that (ii) the friction force is proportional to the normal load acting on the surface. 

Dividing the two forces by the nominal contact area gives a relation between the shear stress 𝜏 

and the normal stress 𝜎𝑁, known as the 2nd   o  o ’    w   

𝜏 = 𝜇  
 𝜎𝑁 (1.6) 
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It is important to specify that this link existed before the Mohr-Coulomb criterion and does not 

consider a possible cohesion of the material. Combining equations 1.3 (Mohr-Coulomb) and 

       o  o ’    w   we  re    e  o e  r    w    we          the effective friction 𝝁∗ different 

from the coefficient of friction 𝜇𝑓 used for Mohr-Coulomb (cf. eq. 1.4): 

𝜇∗ =
𝜏

𝜎𝑁
=

𝐶

𝜎𝑁
+ 𝜇𝑓 (1.7) 

  o  o ’   r    o    d   e e  e    e  r    o   re       r      e    e o  zero  o e  o  w        e 

intact rock. This effective friction will be used all along the Thesis. 

As friction coefficient 𝜇𝑓
  is weakly dependent on normal stress (Lockner & Beeler, 2002), 

effective friction 𝜇∗ mostly depends on the presence of a third body (i.e. material filling the 

contact interface, as a granular fault gouge (section 1.2.2), and surface geometry (roughness of 

ro k      o          er   e …      er  (Byerlee, 1978) proposed that for intact rocks, the 

maximum shear strength before failure was independent of rock mineralogy. These 

observations were gathered in the well-k ow    er ee’  r  e   re e             e r   re     

dependence on normal stress as the relation below: 

𝜏 = {
0.85. 𝜎𝑁           𝜎𝑁 < 200 𝑀𝑃𝑎

50 + 0.6. 𝜎𝑁     200 < 𝜎𝑁 < 1700 𝑀𝑃𝑎
 (1.8) 

From these rules, Figure 8  re e      er ee’   r    o  (grey part) in a graph of shear stress as a 

function of normal stress, with effective friction ranging from 0.6 ≤ μ∗ ≤ 0.85. However, 

  er ee’    w    j     o  o        re    d o       e     or    o    o    r    e de or    o   

failure, and critical strength of intact rocks (Marone, 1995). Even though these rules are widely 

used to predict rock strength and effective friction for many materials, certain layered minerals 

and phyllosilicates [(Niemeijer & Spiers, 2005), (Collettini et al., 2009), (Collettini et al., 

2019)], gouge material layers (Marone, 1995), or fluid-filled faults [(Schmocker et al., 2003), 

(Collettini et al., 2009)], present weaker  e    or       do ’      w      e e r  e  (Imber et al., 

2008). Some effective friction coefficients obtained for weaker rocks are also displayed in 

Figure 8 (Collettini et al., 2019). For granular materials, powders, and fault gouge, special 

attention needs to be paid to frictional properties, which are more complex than for 

classical intact rock (section 1.4). 

These new definitions of the contact allow us to characterize the stability of the fault 

according to empirical friction models that we will present in the following section. 

Friction is a key parameter to follow the weakening of a fault, and its dual dependency on 

time and velocity gave birth to friction laws. 
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Figure 8. Effective friction properties of different rocks, gouge, fabric, and phyllosilicate-rich faults materials. (a) 

  e r   re              o  o   or      re      r      e r   r  o    er ee’  r  e       e  ro  (Collettini et al., 2019).  

1.3.2. Stick-slip and friction scaling laws 

Stick-slip and stability 

The seismic cycle, previously presented in subsection 1.2.1 with stress drop, is the analogy of 

  e “    k-    ” de o   r  ed    (Byerlee & Brace, 1968) during experimental tests on a 

cylindrical sample of rock. When a slip is initiated within the fault, it can either be slow and 

stable or sudden with an associated stress drop enhancing dynamic instabilities. These 

instabilities are followed by a period without movement during which the stresses are restored 

(stick), and then again by instabilities (slip).  

From an engineering point of view, this phenomenon is often presented as an analogy of a mass-

spring sliding system [(Scholz, 2002), (Marone, 1998)], Figure 9 (a). The spring represents the 

stiffness of the material surrounding the fault and the bloc system is submitted to both external 

load (normal force N) and constant velocity (V) applied on the free spring extremity. These 

stick-slip experiments are highly reproduced in laboratories or numerical experiments, as 

analogs to natural earthquakes [(Byerlee & Brace, 1968), (Byerlee et al., 1978), (Aharonov & 

Sparks, 2004), (J. Leeman et al., 2015), (Dorostkar, 2018), (Passelègue et al., 2019)]. These 

notions are very important for the following since they will allow characterizing the stable or 

unstable character of the observed fault slips. 

As presented in Figure 9 (b), slip instabilities may occur if the stiffness of the fault K (i.e. 

stiffness of the loading system for experimental setup) appears to be lower than 𝐾𝑐. In this case, 

the slope of the force-slip curve passes through a possible friction peak (𝐾𝑐 > 𝐾). Conversely, 

sliding can occur in a stable manner if 𝐾 > 𝐾𝑐 (Figure 9 (b), blue line).  
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Figure 9. (a) a block-slider model submitted to normal and tangential forces with a stiffness K and a constant 

velocity V. In the first phase, the spring stores energy, and the tangential resisting force is strong enough to 

maintain a static contact of the system: this is the stick phase (or interseismic period). Even if the shear strength is 

increasing, there is no displacement of the mass block. In a second phase, the external force applied to the spring 

becomes higher than the resisting force, triggering sliding. The block mass is suddenly put into motion and slides 

until part of the stored energy is released: this is the slip phase (b) Schematic diagram which illustrates the limit 

of stability as a force-displacement. 

Friction scaling laws 

Since stick-slip is defined as the analogy of a seismic cycle, it becomes interesting to establish 

frictional laws to define and model precisely the contact between two fault walls sliding against 

each other. Frictional forces evolution can be modeled by constitutive laws grouped into two 

main classes: the slip-dependent laws (considering that friction only depends on fault slip and 

basic geometry) and the rate-and-state dependent laws (friction is a function of slip velocities 

and state variables), (Rice & Cocco, 2002). 

Slip-dependent laws, slip weakening – First observations of the weakening effect were made 

by [(Dieterich, 1972), (Scholz et al., 1972)]. The slip weakening is related to fracture mechanics 

and slipping zone and is mainly based on surface geometry and contact properties. It is thus 

influenced by both the roughness of the fault surface and the thickness of the gouge (Marone & 

Kilgore, 1993). Figure 10 shows two schematic views of slip-weakening, (a) is the theoretical 

“   e r-we ke    ”  w          e  o           ed   ew o    we ke      ro    e  e k o   r    o  

to residual friction, and (b) is the same slip weakening but with a more realistic aspect of a non-

linear weakening, (Ohnaka, 2013). The shape of the slip weakening curve can differ as a 

function of fault characteristics and other representations are employed [(Kanamori & Heaton, 

2000), (Abercrombie & Rice, 2005)]. 

In the case of a classic stick-slip phenomenon, (Rabinowicz, 1951) demonstrated the existence 

of a critical sliding distance 𝐷𝑐, at the end of which the friction has dropped from 𝜇𝑝
∗ , the peak 

of static friction to 𝜇𝑑
∗ , the residual friction. This well-known critical slip distance 𝐷𝑐  is the slip 

distance corresponding to a drastic decrease in frictional strength, and is considered to be the 

distance necessary for the renewal of the contact surfaces (Dieterich, 1979). We can thus define 

the slope of friction drop as follows: 

𝐾𝑐 =
|𝜇𝑑

∗  
− 𝜇p

∗ |𝜎𝑁

𝐷𝑐
 (1.9) 

The critical sliding distance is very large for natural earthquakes (cm to meter), and from 10-5 

to 10-3 for lab experiments at low slip velocity (Marone & Kilgore, 1993). As first proposed by 
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(Rice & Cocco, 2002), these classical slip weakening models may be incomplete and weakening 

mechanisms do not depend on interface properties only [(Barras et al., 2019), (Barras et al., 

2020)]. It is interesting to note that the magnitude of the stress drop with the stick-slip 

phenomenon also varies with the loading rate, fault geometry, elastic properties, etc.  

 
Figure 10. (a) Linear slip weakening, (b) Non-Linear slip weakening, with 𝜇0

∗  the initial static friction value, 𝜇𝑝
∗  the 

peak of static friction (after healing), 𝜇𝑑
∗  the dynamic or residual friction. ∆𝜇𝑠 is the static friction difference, 

∆𝜇𝑝the friction drop from the peak value to its residual value, or breakdown friction. 

Rate and state friction laws – Other authors have tried to create a more general model to 

represent these mechanisms, not only based on "static" and "dynamic" friction. In order to 

describe the seismic movements of rocks, (Dieterich, 1979)    rod  ed   e “     r  e   d     e 

variab e  o         e   w   or ro k  r    o ”        w      e e  re e   r       w     ed o  

laboratory and numerical observations, showing that the frictional force is logarithmically 

dependent (i) on the time that surfaces are in contact and (ii) on slip velocity (Sliding friction 

decreases with increasing velocity rate, also known as "velocity weakening") [(Dieterich, 

1979), (Rice & Ruina, 1983), (Marone, 1998)]. The first Rate and State friction laws have been 

    ed “        w” (Dieterich, 1979) and depend on two empirical constants a and b. There are 

also different versions of the RSF law, such as the slip law of (Ruina, 1983), or the PRZ law of 

(Perrin et al., 1995) involving a different static friction drop as a function of time. From these 

laws, it is also possible to determine the frictional stability of the fault, and whether the fault 

motion is seismic or aseismic. These laws have the advantage to reproduce both laboratory 

experiments for low sliding velocities (i.e. from 0.001 to 10 m/s), [(Marone, 1998), (Lockner 

& Beeler, 2002), (Scholz, 2019), (Im et al., 2019)], and observations of frictional sliding [(Chen 

& Lapusta, 2009), (Chen & Lapusta, 2019)]. However, RSF laws remain complicated to 

understand and to interpret, and they are also not representative of some fault behavior for 

earthquake nucleation (for high stresses, fluid pressures, and high temperatures) [(Stesky et al., 

1974), (Passelègue et al., 2019)] or earthquake propagation (high slip rate) [(Brodsky & 

Kanamori, 2001), (Mizoguchi et al., 2007), (Sone & Shimamoto, 2009)]. We will not enter 

more in detail in the RSF laws because, as we elaborate later, our numerical models do not 

include any rate- or state-dependence. The reader may refer to [(Dieterich, 1979), (Rice & 

Ruina, 1983), (Marone, 1998)]. 

In this thesis, we restrict our focus on the most immediate (fracture-related) slip weakening 

phenomena and dedicate consideration to simpler friction laws. We then still need to look 
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into the energy budget of the sliding fault to complete the knowledge of the mechanical 

fault behavior from an energetical point of view. 

1.3.3. Energy budget and dynamic weakening 

Throughout an earthquake, energy is dissipated during fault sliding by the means of different 

mechanisms. Figure 11 schematizes the total energy budget ∆𝑊 (J.m-2) of this rupture 

propagation based on classical slip weakening models [(Kanamori & Heaton, 2000),(Rice & 

Cocco, 2002), (Abercrombie & Rice, 2005), (J. Aubry et al., 2018)]. ∆𝑊 is the total 

deformation energy dissipated in the process and is the sum of a fracture energy 𝐸𝐺 , a radiated 

energy 𝐸𝑅 (propagating by the mean of elastic waves) and a frictional energy 𝐸𝐻 (dissipated 

within the slip zone by frictional heating): 

∆𝑊 = 𝐸𝐻 + 𝐸𝑟 + 𝐸𝐺 (1.10) 

Although 𝐸𝐻 represents an important part of the total energy budget, it does not strongly 

influence rupture processes that mainly depend on 𝐸𝐺  (Fulton & Rathbun, 2011). The radiated 

part 𝐸𝑟 is only a few percent of the total work and can be measured with the stress drop value 

and total displacement Ds of the fault, Figure 11. This radiated energy released during an 

earthquake is linked with the magnitude of the earthquake thanks to the seismic moment 𝑀0 

(depending itself on the fault displacement, its Young modulus and its surface pf sliding). 

 
Figure 11. (a) A theoretical model of energy budget with ∆𝑊as the sum of a fracture energy 𝐸𝐺 , a radiated energy 

𝐸𝑅 (propagating by the mean of elastic waves) and a frictional energy 𝐸𝐻 (dissipated within the slip zone). 𝜏0 is 

the initial static shear stress, 𝜏1  the dynamic shear stress, 𝐷𝑐 is the slip weakening distance and 𝐷𝑠 the end of slip 

displacement. This energy budget model is based on linear slip weakening theory. This is a simplification of the 

total balance of energy which also depends on the size of earthquakes and additional thermal weakening (Kanamori 

& Heaton, 2000). 

Even though many studies focus on the understanding and distribution of these different 

energies, they remain complex in their relationship with the different sliding mechanisms. 

Literature reports a large range of phenomena occurring during faulting, after the end of the 

first slip weakening phase, and mainly observed under high pressure and velocity and within a 

very thin slipping zone [(Rice & Cocco, 2002), (Di Toro et al., 2011)]    e e “d       

we ke    ”  e           o d   ere     e w    the so-    ed “     we ke    ”, need a certain 

amount of sliding before occurring [(Kanamori & Heaton, 2000),  (Scholz, 2002), (Rice, 2006), 

(Acosta et al., 2018)], and are generally caused by thermal effects. The temperature rise can 

lead to several dynamic weakening mechanisms enhanced with water presence such as: (i) 
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Rock melting, large slip and high slip velocities, [(Rice & Cocco, 2002), (Otsuki et al., 2003), 

(Niemeijer et al., 2011), (Di Toro et al., 2011), (Violay et al., 2014), (Aharonov & Scholz, 

2018), (Fondriest et al., 2020), (Mollon et al., 2021b)] ; (ii) Flash Heating, asperity contact 

[(Rice & Cocco, 2002), (Rice, 2006), (Acosta et al., 2018), (Cornelio, Passelègue, et al., 2019)]; 

or (iii) Thermal pressurization, fluid within porosities [(Rice & Cocco, 2002), (Wibberley & 

Shimamoto, 2003), (Otsuki et al., 2003) (Rice, 2006), (Violay et al., 2013), (Acosta et al., 2018), 

(Lambert & Lapusta, 2020), (Badt et al., 2020)]. 

(J. Chester et al., 2005) found that fracture energy 𝐸𝐺  is small compared to other energies (~1% 

for fault gouge according to (Fulton & Rathbun, 2011)). However small, this energy is needed 

to weaken a fault during an earthquake and to allow fracture propagation. Linking friction 

model and crack model (Kanamori & Brodsky, 2004), the fracture energy 𝐸𝐺  corresponds to 

the work needed to drop the shear strength 𝜏0 to the residual strength 𝜏1 for a slip weakening 

distance Dc: 

EG = ∫ (𝜏 (𝑈) − 𝜏1 ) 𝑑𝑈

𝐷𝑐

0

(1.11) 

Recent researches on the fracture process also try to understand how and to which extent the 

frictional rupture can be viewed as an ordinary fracture process [(Barras et al., 2019), (Barras 

et al., 2020)] offering some insight into open questions relating to energy budget. However, 

even though some crucial information can be found in the following papers [(Kanamori & 

Heaton, 2000), (Abercrombie & Rice, 2005), (J. Chester et al., 2005), (Rivera & Kanamori, 

2005), (Fialko, 2007), (J. Aubry et al., 2018), (Okubo et al., 2019b), (Barras et al., 2019), 

(Barras et al., 2020)], earthquake energy budget still needs further research in the relationship 

they have with each internal mechanism happening during slipping. 

In this Thesis, we restrict our focus on the most immediate (fracture-related) slip 

weakening phenomena and disregard all thermal effects, which are supposed to happen 

only after a certain amount of slip. A fault zone remains a very complex system in which 

many parameters interact at different scales. We would now like to add another degree of 

complexity by considering the properties of a granular fault gouge that can be found in the 

main slipping zone defined in (1.2.2). We propose for this purpose a look into granular 

material science and tribology to detail current knowledge on this material and its 

interaction with fault slip mechanisms. Section 1.4 will detail the granular fault gouge 

importance, its rheology, and the link with our research strategy. 

1.4. The role of granular fault gouge 

(Lockner & Beeler, 2002) reported that a wide range of parameters can affect the strength of 

both faults and rocks including a variation on mineralogy, porosity, cementation, packing 

geometry of gouge, surface roughness and wavelength, angularity and size of gouge particles, 

temperature, pore-fluid pressure, and composition, deformation rate, deformation and stress 

history, fabric, foliation, or other anisotropic properties, etc. Figure 12 is a simplified version 

of the fault core previously presented in section 1.2.2, schematizing the main parameters acting 

on fault slip mechanisms and contact stability, gathered as (a) external constraints (pressure, 
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      e o       e  er   re…        o k  ro er  e    d     o o    ro    e          e    

  rd e  …           d   d   r     r    er     ro er  e     r    e   ze     r     o       e o  

  r    e       k e  …    d (e) infill material within the gouge. 

 
Figure 12. A simplified version of the fault zone structure previously presented in section 1.2.2, highlighting the 

granular fault gouge. The main influent factors are:     e  er     o   r        re   re        e o       e  er   re…   

     o k  ro er  e    d     o o    ro    e          e      rd e  …           d   d   r     r    er     roperties 

   r    e   ze     r     o     e     e o    r    e       k e  …    d  e            er    w        e  o  e  

Gouge characteristics are believed to influence, if not control, a large part of slip mechanisms. 

Such gouge parameters have been studied in the literature from Lab or in-situ points of view 

[(Byerlee & Brace, 1968), (Sammis et al., 1987), (Biegel et al., 1989), (Marone & Scholz, 1989), 

(Mair & Marone, 1999), (Anthony & Marone, 2005)], and also numerically by the mean of 

Discrete Element Modelling (DEM) [(Morgan & Boettcher, 1999), (Morgan, 1999), (Guo & 

Morgan, 2004), (Da Cruz et al., 2005), (Cho et al., 2008), (Zhao et al., 2012), (Gao et al., 2018)]. 

As for intact rock, fault gouge stability mainly depends on normal and deviatoric stresses 

applied to the fault. High stress will tend towards a fractured regime with unstable deformations 

while low stress will be more likely to result in an unfractured regime (stable deformation), 

[(Byerlee et al., 1978), (Mair & Marone, 1999)]. Elements (a), (b), and (c) are widely studied 

in the literature and known as major elements acting in the fault behavior. Although they still 

need further research they will not be the main subject of this manuscript. The reader may 

access some interesting information on these topics in the following papers: external constraints 

[(Byerlee & Brace, 1968), (Stesky et al., 1974), (Mair & Marone, 1999), (Guo & Morgan, 

2004), (Niemeijer et al., 2011), (Violay et al., 2012), (Geng et al., 2018), (Bedford & Faulkner, 

2021), etc.], rock properties and lithology [(Marone, 1998), (Anthony & Marone, 2005), 

(Fournier & Morgan, 2012), (Insua-Arevalo et al., 2021), and fluid [(Violay et al., 2013), 

(Violay et al., 2014), (Scuderi et al., 2014), (Scuderi & Collettini, 2016), (Bayart et al., 2016), 

(Dorostkar et al., 2017a), (Acosta et al., 2018), (Cornelio, Spagnuolo, et al., 2019). 

In this chapter and the rest of the Thesis, we will focus on the fault gouge material, its 

mechanical and rheological properties as well as the potential infill material present within 

the gouge and their influence on fault behavior. Section 1.4.1 describes the main fault 

gouge characteristics from a mechanical and granular point of view. Subsection a. answers 
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why the gouge is so important and makes the link between tribology and fault mechanics 

by the mean of the Third Body Theory and wear models. It also details the importance of 

a lubricant presence within the contact, even without fluid. Subsection b. explains how the 

gouge deforms, showing the different kinds of deformation observed within a granular 

fault gouge in direct shearing and the main shearing bands formed all along the gouge life 

   ede     d        d …   Then section 1.4.2 restrains the Thesis to the study of infill 

material within the fault core (i.e. cement and matrix material). It proposes a description 

of these materials and presents some work already done in the research field. Finally, 

section 1.4.3 presents a small review on numerical modeling and fault gouge modelization 

and concludes on the modeling choices kept for the rest of the Thesis. 

1.4.1. Research Strategy #1: focus on fault gouges mechanics and rheology 

a. Gouge as a geological third body 

Wear and grain fragmentation 

As previously discussed in section 1.2.2, the fault core mainly contains fragmented rock 

particles coming from host rocks shearing. These granular particles can also be defined as wear 

material from damage or erosion of surfaces in contact (Scholz, 1987). As shown in Figure 13 

(a), wear rate first presents a period of rapid wear due to surface asperities, followed by a lower 

stable wear rate, corresponding to the established gouge layer (Scholz, 2019). The wear rate 

mainly depends on lithology (ex: sandstone wears much faster than granite) and on the applied 

normal stress, showing a behavior close to that of Archard's law (Archard, 1953). As wear 

continues, the initially rough surfaces in contact become, at some point, totally separated by 

gouge particles, meaning that the thickness of the gouge zone increases linearly with total slip 

for brittle faults (Scholz, 1987). The experimental wear rate was also found to be smaller than 

the one of natural fault due to surface roughness in contact.  

A particle size reduction is observed from the comminution process [(Sammis et al., 1987), (F. 

Chester et al., 1993), (Sibson, 2003)] also called grain breakage [(Daouadji et al., 2001), 

(Daouadji & Hicher, 2010)] in granular mechanics. The number and amplitudes of successive 

slips reduce the size of particles towards a fractal distribution (depending on the type of 

mineral), which also reduces pore spaces [(Sammis & Biegel, 1989), (Olgaard & Brace, 1983), 

(Blenkinsop, 1991), (An & Sammis, 1994), (Billi & Storti, 2004), (Billi, 2005), (Muto et al., 

2015)]. The evolution of this fractal dimension also relies upon the amount of shearing (time 

scale) and the distance from the fault core (geometric scale), as in Figure 13 (b). Mineral grains 

morphologies can be very diverse, but granular gouges generated by comminution are expected 

to exhibit rather rough and angular shapes [(Olgaard & Brace, 1983), (Sammis et al., 1987), 

(An & Sammis, 1994), (Lin, 1999)], Figure 13 (c). A collection of these angular shapes can be 

observed in Appendix 1.A. 
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Figure 13. (a) A complete wear curve for Westerly granite, for an applied normal stress of 3 MPa. The first part is 

the running-in wear, which can evolve to steady-state wear at a constant rate. Image from (Scholz, 2019). (b) 

Fractal dimension of the ATTL and San Andreas Fault quartz grains as a function of the distance from the fault 

core. (c) Pulverized rock of the Arima-Takatsuki Tectonic Line (ATTL) fault gouge, photomicrograph, Both 

images are from (Muto et al., 2015). 

Granular gouge as a lubricant 

From an engineering point of view, any type of lubrication between two solids in contact, may 

it be fluid or solid, is supposed to decrease friction at the interface. The lubricant may have a 

different role on the mechanical contact depending on the quantity and thickness between the 

two contacting bodies (Hardy, 1920) and is seen as a good ingredient in tribological applications 

by decreasing friction and reducing energetic loss. The role of fault gouge is similar at the fault 

scale, the presence of gouge induces an important weakening in comparison with fault friction 

without or with negligible wear formation, e            e d   ere  e  o  d w      er ee’  r  e 

in section 1.3.1 for gouge material        e        w    o   red  o “ owder    r     o ”    

(Reches & Lockner, 2010) who also proposed a model for fault weakening as velocity rate 

increases. The accumulation of wear material also tends to stabilize slip relatively to shear 

between bare rock surfaces [(Scholz, 1987), (Biegel et al., 1989), (Marone et al., 1990), 

(Marone, 1998), (Morgan & Boettcher, 1999), (Reches & Lockner, 2010)].  

To illustrate the evolution of the different contact mechanisms, with or without lubricant (i.e. 

fluid or powder), Stribeck proposed in the early 1900s a model of friction coefficient evolution 

as a function of a hydrodynamic number proportional to (viscosity*velocity)/load. The Stribeck 

curve was initially proposed for tribological application but was recently used and compared to 

fluid-lubricated faults [(Spikes, 1997), (Kanamori & Brodsky, 2001), (Cornelio, Spagnuolo, et 

al., 2019), (Cornelio & Violay, 2020)].      e          e  o  e   o  “   rd  od ” w    o   ed 

out by (Godet, 1984), inspired by lubrication theories, to characterize the material or medium 

at the contact interface between two solids, Figure 14 (c).         rd  od       e   “     d” 

lubricant (as fluid already present within the fault or artificially injected (as with EGS)), but in 

  e    e o  “ r ”  o             rd body is still present and is composed of wear particles, Figure 

14 (a) and (b). In this mechanism, the granular layer has several interesting functions as (i) 
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supporting the load applied on the contact, (ii) participating to velocity accommodation, and 

(iii) separating surfaces in contact to avoid direct interaction (Godet, 1984). 

 

Figure 14. Third body theory representation schema and powder lubrication. (a) Sliding surface with adhered 

gouge and gouge layer, from Sierra White granite in rotary shear. Image from (Reches & Lockner, 2010), (b) TEM 

observations on post-mortem fault sections at 180 MPa, triaxial experiment. Image from (Jérôme Aubry, 2019). 

(c) schema of the third-body theory applied to the fault system. More information on the third body concept are 

available in [(Iordanoff et al., 2005), (Fillot et al., 2007)]. 

[(Mair et al., 2002), (Nouguier-lehon et al., 2003), (Anthony & Marone, 2005)] have shown 

that angular and faceted particle shapes (instead of circular grains) led to higher friction 

coefficients and different mechanical behaviors. These results also need to be related to the 

roughness of the bare rock which increases the shear ratio observed for any shape of particles. 

As particle shape influences frictional properties, it also controls stick-slip dynamics: spherical 

particles mostly show a production of stick-slip motion, whereas angular particles promote 

stable sliding (Mair et al., 2002). The influence of the grain shape on friction increases with the 

decrease in the normal stress (Guo & Morgan, 2004). 

Within this Thesis, we decided to stay in the boundary lubrication regime, which is the 

classical solid-solid contact (no liquid lubricant, dry contact). We define the fault gouge 

as wear particles, as the process of 3rd body production, and friction as the rheology of this 

3rd body (similar to fluid viscosity). Another objective is to reproduce realistic granular 

shapes of gouge with angular and faceted shapes as found in fault core (Appendix 1.A). 

The evolution of gouge properties with slip and its influence on slip mechanism and 

rheology are described within the next subsection b. 

b. Deformation mechanisms and rheology of fault gouges 

The understanding of fault gouge deformation mechanisms is a key element in the construction 

of fault models. Deformation zones are complex structures, they have variable aspects 

(geometry and kinematics), depending on the mechanism of deformation adopted and rock 

characteristics, section 1.2.3. A word about dilatancy? (Marone et al., 1990) indicate that 

granular go  e        ow   r   er “ e o    -  re    e    ”  e    or   d  ed                  

dilation of fault gouges (dilation implying a variation in the porosity state of the granular gouge 

sample). It is clear that shear between bare rock surfaces does not involve dilation as great as 

observed in the case where a granular gouge is present [(Marone et al., 1990), (Kilgore et al., 
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1993), (Beeler et al., 1996)] and that denser granular samples show larger dilating behavior than 

a loose sample. However, shear localization can also form within fault gouge to accommodate 

the inelastic shear strain. They appear as a common phenomenon in granular mechanics, widely 

studied both experimentally and theoretically [(Dunn et al., 1973), (Vardoulakis & Graf, 1985), 

(Antonellini et al., 1994), (Antonellini & Pollard, 1995), (Haines et al., 2013)]. 

Riedel shear bands 

For a sufficiently mature fault system (sufficient gouge layer), shear localization was observed 

at specific angles and called Riedel Shear bands (or cataclastic deformation bands) (Tchalenko, 

1970). They reflect a heterogeneous stress field developing in response to deformation 

[(Marone & Scholz, 1989), (Morgan & Boettcher, 1999), (Lockner & Beeler, 2002), 

(Kaminskaite et al., 2019)]. Figure 15 schematizes the main deformation bands forming within 

the shearing gouge. Secondary Riedel bands in the R orientation (sense of shear zone) are 

commonly observed to be predominant, but in some cases, antithetic shears (i.e. conjugate 

  e r        or       e  ’ or e     o   ro       w     r     r   ow [(Davis et al., 2000), (Y. Katz 

et al., 2004), (Misra et al., 2009)]. Y surfaces are parallel to the direction of shearing and can 

also form within the boundary shear bands B, also parallel to the shearing direction but 

located at the boundaries [(Gu & Wong, 1994), (Blanpied et al., 1995)]. In some granular 

materials, such as Clay-rich fault gouge (Rutter et al., 1986), a primary foliation P can be 

observed normal to 𝜎1 (angle 135° from the direction of shearing in the simple shear and 

progressively rotating until 180°). Extension fractures T, normal to the least principal stress 

direction can form for low and medium-grade metamorphic terranes or high fluid pressure. 

Even though Riedel shears were first used to describe brittle deformation, a foliation can also 

be observed within ductile deformation in the R orientation (Scholz, 2019). The shear zone at 

            e    o    o e   r  o     ore  o   e    r    re          er     e     ed “  e r zo e 

  r    re” or “  ede    e r   r    re” (Y. Katz et al., 2004). 

 

Figure 15. Schematic diagram of a sheared gouge zone, showing the geometrical relationships of the main 

structural elements and the orientations of the principal stresses with the shear zone. 

The presence of Riedel bands (R) has been identified as being responsible for a mechanical 

weakening [(Gu & Wong, 1994), (Beeler et al., 1996)] and to be an indicator of a change in 

stability in frictional sliding (Byerlee et al., 1978). It is therefore essential to study the timing 

of their formation during the sliding and their orientation. 
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The temporality of Riedel bands and their consequences 

The onset of Riedel bands is mainly associated with a significant dilatancy rate and a reduction 

in the comminution rate of the granular layer [(Marone, 1998), (Borja et al., 2013)]. The 

interplay between porosity [(Dunn et al., 1973), (Antonellini et al., 1994)] and particle size 

distribution [(Marone & Scholz, 1989), (Antonellini & Pollard, 1995)], confining pressure 

(Byerlee et al., 1978), clay or weak mineral content [(Haines et al., 2013), (Kenigsberg et al., 

2019)] and amount of strain may develop these Riedel bands at different stages and with 

different characteristics [(Antonellini et al., 1994), (Philit, 2017)]. Figure 16 schematizes the 

main stages of Riedel shears formation gathered from different studies [(Tchalenko, 1970), 

(Byerlee et al., 1978), (Marone & Scholz, 1989), (Gu & Wong, 1994), (Beeler et al., 1996), 

(Marone, 1998), (Hadizadeh et al., 2015), (Kenigsberg et al., 2019), (Scholz, 2019), (Bedford 

& Faulkner, 2021)]: 

• Step 1 – elastic phase. Due to external loading, the granular layer is compacted and 

reorganized (particle movement or grains fragmentation) during the elastic phase. The 

global stiffness increases and the porosity is reduced, controlling the mechanical et 

elastic responses (Kenigsberg et al., 2019). The stress ratio (i.e. effective friction) 

increases progressively until it reaches the maximal shear strength where Riedel bands 

formation is observed. 

 

• Step 2 – weakening. The R-bands are still prominent, but Y-bands begin to form. They 

are sufficiently developed to take part in the control of gouge behavior and mechanical 

properties. Interparticle bridges (or force chains networks) are formed to support the 

shear loads applied to the assembly. They can sometimes correspond to T-bands. These 

chains are often inclined at 45 ° from the direction of shearing and evolve throughout 

the shear (Morgan & Boettcher, 1999). Conjuga e   ede    ’  re  o  o  er ed w      

the images, Figure 16 (b), but if they form it must be at this step with strain-hardening 

behaviors (Davis et al., 2000). A decrease in shear resistance from yield is observed (i.e. 

the weakening mechanism). 

 

• Step 3: end of weakening. The main Riedel bands R are less prominent but B & Y 

bands are still developing and increasing again the weakening of fault gouge. R-bands 

progressively connect with the boundary bands. 

 

• Step 4: steady-state. This is a residual stage, where shear resistance has reached a stable 

steady-state friction with one or several parallel principal Y-shears lying in the slip 

direction. The Y-shears can be developed at the center of the gouge (Marone, 1998) or 

within the Boundary shear zone (Bedford & Faulkner, 2021). A stable frictional strength 

is reached at the point at which well-developed Y shears become prominent (Marone, 

1998). 
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Figure 16. (a) Riedel band formation within the granular fault gouge illustrated with stress ratio as a function of 

shear displacement. Image modified from (Marone, 1998). (b) Backscatter electron (BSE) images of 15 µm quartz 

gouge layers sheared σn = 80 MPa. Stops 1–3 correspond to the different displacements where shearing is 

stopped, Stop 1: just after the yield (slip=1.5 mm), R Riedel shears within the layer. Stop 2: at the onset of stick-

slip instabilities (slip=3.2 mm), R Riedel shears and incipient B-shears are observed. Stop 3: end of the experiment 

after multiple stick-slip events (slip=6 mm), B-shears are observed at the top and bottom of the layer, with discrete 

Y-shear planes within the B-shear-zone. Images from (Bedford & Faulkner, 2021). 

The transition from stick-slip to stable sliding corresponds to the formation of boundary and  -

shear bands (Gu & Wong, 1994). Even though Riedel shear bands are a necessary condition for 

stick-slip instabilities to occur in gouges, they are not sufficient, as they were also observed for 

some stable slidings (Moore et al., 1988). It has been speculated that the  ′ bands may inhibit 

gouge movement by preventing the connection between the   and   bands (Moore et al., 1988), 

but the link between the orientation of the Riedel bands and the slip modes is not yet fully 

understood. As suggested by [(Moore et al., 1988), (Gu & Wong, 1994)], it also exists a critical 

angle 𝛼𝑖 between the bands and the direction of shearing that indicates whether or not 

instabilities can occur, higher angles tending to destabilize the gouge. According to Mohr-

Coulomb criteria and geometry, 𝛼𝑖   could be equal to 𝜑 2⁄  for simple shear (with 𝜑 being the 

internal friction angle). However, this relation has to be used with care, as other factors can be 

involved in the 𝛼𝑖  angle (Moore et al., 1988). Recently, it was confirmed that Riedel bands can 

differ from the center of the granular fault gouge to the rock boundaries. They appear to develop 

at lower angles to rock-gouge boundaries toward unstable slip (Hirata et al., 2017), and mostly 

depend on normal stress and strain velocity in major and minor stress orientation axes. 
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The link between the orientation of Riedel bands and slip patterns is not yet fully 

understood. One part of the thesis will be devoted to studying the temporality of Riedel 

bands as a function of gouge characteristics. For this, we will focus on two types of 

gouges containing infill material, described in the next section. 

1.4.2. Research strategy #2: study of infill materials  

Once considering a mature enough fault zone that has already been sheared, infill material can 

be observed within void spaces around granular particles. They bring additional heterogeneities 

to the fault gouge modifying the stress field (Scholz, 2019) and petrophysical properties (Philit, 

2017). Even though these materials are well described from a geological point of view, it is 

more difficult to find associated lab experiments or simulations. In this section, we gather the 

main characteristics of two types of infill material, matrix particles, and cement, and wonder 

what is their influence on fault zone behavior and stability. This distinction was made thanks to 

a bibliography of different gouges and infill materials available in Appendix 1.A. 

Cement or matrix? 

Within a mature fault gouge, the distinction between cement and matrix between breccia clasts 

is not easy to make and partly depends on brecciation processes in fault zones [(Wise et al., 

1985), (Sibson, 1986), (Riedmüller et al., 2001)]. Many rock classifications have been proposed 

from structural geology and based on the parameters fabric, texture, clast size, and matrix 

percentage but they all depend on the scale of observation and resolution of the individual 

component with the naked eye, giving sometimes really different classifications [(Sibson, 

1977), (Riedmüller et al., 2001), (Woodcock & Mort, 2008)]. Figure 17 proposes a 

classification for cohesive and incohesive fault core and associated infill material from 

(Riedmüller et al., 2001) combined with explanations from (Woodcock & Mort, 2008).  

 
Figure 17. (a) Image mixed from (Riedmüller et al., 2001), rock classification from (Sibson, 1977) and (Woodcock 

& Mort, 2008)   d    er       ro   e  r    o      e         ze  e wee  ‘            ’   d ‘   r  ’     e   ed    

0.1mm, which is the resolution of an individual component with naked eye (Wise et al., 1985). (b) Blocks 

embedded in a matrix, random distribution of blocks varying in size and orientation, microscale (thin section), 

image from (Riedmüller et al., 2001). (c) Micrographs of thin sections showing sandstone with abundant quartz 

cement and some reduced primary pores plane (polarised light with crossed polarization filters, length of 

photomicrographs is 0.96 mm). Image from (Molenaar et al., 2007). 
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Mineral cementation, generally evolving with burial, refers to a crystalline material coming 

from rock dissolution or precipitation (Walderhaug, 1994), partial melting (pseudotachylite, 

non-crystalline material), [(Di Toro et al., 2009), (Fondriest et al., 2020)], or other processes 

derived from previous slips. It fills remaining pore spaces between particles, reducing 

permeability and changing the global state of cohesion of the gouge material [(Woodcock & 

Mort, 2008), (Philit et al., 2018)]. The behavior of this cement depends on the material 

composition [(Caine et al., 2010), (Philit, 2017), (Kaminskaite et al., 2019)], on the volume, 

and on the contact interface between cement and particles. By contrast, the term Matrix refers 

here to very fine cohesionless particles whether produced by local comminution or by the 

introduction of other sediments [(Lee & Kim, 2005), (Woodcock & Mort, 2008)]. The scale of 

observation and classifications allow us to distinguish a weak gouge matrix from fragments or 

clasts with a            ze  e wee  ‘            ’   d ‘   r  ’  e   ed           re o    o  o  

an individual component with naked eye (Wise et al., 1984)). Matrix particles are from parts 

similar to a granular material with high fractal dimension and will present the same mechanical 

consequences (denser granular zone with porosity reduction). The lithology of matrix or clasts 

particles also influences the frictional behavior. For example, an increase in the percentage of 

clay matrix drastically reduces the effective friction toward 0.1-0.2 (Wojatschke et al., 2016). 

Impact of cementation on rheology and contact stability 

For cohesive materials such as cemented rocks, two types of situations are observed: the low-

cohesive (or non-cohesive) materials, where external stress is preponderant on interparticle 

cohesion, and ultra-cohesive materials where cohesion controls particles interactions (that will 

tend to a brittle behavior). Macroscopic cohesion can either be expressed as a tensile, or a 

shearing resistance (Topin, 2009). From a particle point of view, cohesion can be similar to an 

adhesion force or a slip-rolling resistance between particles (Estrada et al., 2008). The cohesion 

in the sense of Mohr-Coulomb is easy to measure (cf. section 1.2.3) and it was widely studied 

for intact rocks [(Handin, 1969), (Schellart, 2000), (Abdelmalak et al., 2016), (Roy & Luding, 

2017)]. Not surprisingly, cohesive rocks are also those with the highest friction compared to 

low cohesion rocks [(Schellart, 2000), (Abdelmalak et al., 2016)]. Indeed, (Lade & Overton, 

1989) showed that, for low confining pressures, the increase of cementation and the associated 

tensile strength lead to an enhancement of friction coefficient (as well as shear and bulk elastic 

moduli): both porosity and permeability of shears bands are also reduced [(M. Wangen, 1999), 

(Ogilvie & Glover, 2001), (Fisher & Knipe, 2001), (Molenaar et al., 2007), (Al-Hinai et al., 

2008)]. The process of cementation gives birth to a new, stronger granular material combining 

its history, the state of initial density (i.e. porosity within the sample), and cementation 

(Schellart, 2000). During granular fault shearing at low confining pressure, cement first 

increases the brittleness at failure and prevents grain rearrangement by increasing cohesion 

between particles (Johansen et al., 2005). For low cementation, the progressive breakage of 

cement bridges between particles enhances local kinematic freedom and allows grains 

reorganization. This loss of cement contribution reduces the stability of the system with a global 

softening and dilatant behavior letting appear shear plane failures previously described [(Rad 

& Clough, 1982), (Das et al., 2014), (Lade & Overton, 1989), (Menendez et al., 1996)]. For 
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high cementation,  breakage of cement is very sudden, enabling fracture instead of shear failure 

[(Schellart, 2000), (Schmocker et al., 2003), (Kettermann & Urai, 2015)]. 

From a geological point of view, fault gouge is seen as an incohesive material, so it 

wo  d    e  ee  re  o    e  o       r     r       w     e e   “ e e  ed             

     ”   owe er   or   e   ke o              we w       e    “       o  e”       e 

granular materials tested, may they be cohesive or not. It appeared that many field 

observations exist on these infill materials, but they count only a few representations in 

tribological studies dedicated to the understanding of fault sliding mechanisms. This 

Thesis aims to add a new key of understanding on these materials at the fault scale 

through granular mechanics and tribology research. 

1.4.3. Research strategy #3: Modeling fault gouges 

Why numerical modeling?  

− The first objective is to model a single fault patch with granular fault gouge inside, large 

enough to observe shear deformations. We also want to model phenomena occurring at the 

grain scale, by representing cement and matrix filling pores around gouge particles. 

Numerical modeling allows easy access to both scales without building a complex 

observation system. The Discrete Element Method can be useful to understand granular 

physics of fault gouge by studying grains interactions and their influence on slip 

mechanisms. 

− The interest is also to start with identical initial granular configuration and to be able to 

easily vary the amount of matrix and cement present in our samples to test a wide range of 

different material behaviors. We also want to quantify and follow the evolution of the 

cohesive bonds created between the grains over time, since such data is impossible to see 

or to follow during a lab or in-situ experiment. 

 

a. Discrete Element Modelling (DEM) 

Discrete Element Modeling (Cundall & Strack, 1979) is a powerful tool to model micrometric 

to centimeter scales and observe the grain-scale deformation. A granular material (i.e. fault 

gouge) can be explicitly represented as a collection of rigid bodies, allowing to study very local 

fault behavior (grains movements) and highlighting the links between the mechano-physical 

properties of the fault and its rheological behavior. In order to be representative of the local 

behavior, a high number of particles needs to be modeled, and the movement and dynamic of 

each particle are computed. Moreover, is it possible to test and vary a huge number of physical 

and numerical parameters as well as different contact laws. 

DEM has been already used in fault mechanics to understand frictional and contact properties 

of a fault core [(Morgan & Boettcher, 1999), (Morgan, 1999), (Guo & Morgan, 2004), 

(Aharonov & Sparks, 2004), (Da Cruz et al., 2005), (Cho et al., 2008), (Zhao et al., 2012), 

(Zhao, 2013), (Ferdowsi et al., 2014), (Dorostkar et al., 2017a), (Dorostkar et al., 2017b), (Gao 

et al., 2018), (Ferdowsi & Rubin, 2020), (Mollon et al., 2021b)], and also in some interesting 
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granular mechanics researches not directly applicated to fault mechanics [(Jensen et al., 1999), 

(Aharonov & Sparks, 1999), (K Maeda, 2006), (Kenichi Maeda et al., 2010), (Mollon et al., 

2012), (Zhou et al., 2017), (Y. Lu et al., 2017), (Mollon, 2018b)]. More recently, the DEM has 

been enhanced by additional coupling or plug-      e “e  e ded    ”  o   der  

thermodynamics in order to study the high-temperature rise and melting within the granular 

fault zone, using a mixture between compliant and rigid bodies, Figure 18 [(Mollon et al., 

2021a) & (Mollon et al., 2021b)], the Computational Fluid Dynamic-DEM (CFD-DEM) is 

designed to observe fluid interaction within particles [(Goren et al., 2011), (Kloss et al., 2012), 

(Dorostkar et al., 2017a), (Dorostkar et al., 2017b), (Dorostkar, 2018), (Tomac & Gutierrez, 

2020)] and FEM-DEM coupling enables to link granular fault to a continuous damage zone 

[(Munjiza et al., 2004), (Dratt & Katterfeld, 2017)]. Grain fragmentation has also been modeled 

with DEM using different methods [(Zhao, 2013), (D. Wang et al., 2021)]. 

 
Figure 18. Setup model for the reproduction of laboratory earthquakes with a discrete-continuum model, software 

MELODY, image from (Mollon et al., 2021a). 

Nowadays, the wide variety of modeling technics enables to study both 2D and 3D problems. 

3D modeling is a considerable technical advance in numerical modeling as it provides access 

to new information in a third direction and more realistic interactions between particles 

[(Ferdowsi et al., 2014), (Dorostkar et al., 2017a), (C. Wang et al., 2019), (Ferdowsi & Rubin, 

2020)]. However, the current 3D numerical experiments are not entirely satisfactory as they 

mostly propose a very thin bandwidth of granular layer: the behavior of tens of particles is not 

representative of the entire granular fault thickness (Dorostkar et al., 2017a). Besides, the 

calculation cost of 3D DEM is much higher than that of 2D modeling, leading to other 

restrictions in the length of the model, the number of particles, shapes of particles, interaction 

laws, etc. Another interesting aspect of computational modeling is the possibility to choose 

particle shapes. However, due to simplicity, convenience, and calculation costs in terms of 

contact detection and repulsive forces computation, most DEM studies use circular (2D) or 

spherical (3D) shapes of particles. This shape simplification: (i) is not very representative of 

fragmented particles found within mature granular fault (1.4.1), (ii) does not provide accurate 

predictions of granular behavior due to the different contact interaction  [(Nouguier-lehon et 
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al., 2003), (Mair et al., 2002), (Mollon et al., 2020)] and is unable to yield interlocking forces, 

(iii) needs some research and additional numerical parameters to change contact properties and 

balance the oversimplification. 

 

Figure 19 displays the steady-state effective friction as a function of the topological dimension 

and shapes of particles based on results from [(Mair et al., 2002), (Frye & Marone, 2003)], and 

personal results with the software MELODY. Lower effective friction is observed for 2D 

experiments which do not account for out-of-plane contacts and circular particles compared to 

angular particles. According to the results, friction also varies systematically between numerical 

and experimental studies. These changes can be explained by different initial and laboratory 

conditions. 

 
Figure 19. Steady-state effective friction 𝜇𝑆𝑆

∗  as a function of the topological dimensions of the model from 1D to 

3D for angular or circular grains, (Frye & Marone, 2003) and personal results with the software MELODY. 

b. Cement and matrix modeling  

Cemented materials can be represented as cohesive granular materials, both playing on the type 

of contact law used (friction, cohesion), properties of the contact network (force distributions), 

and the rheology (dilatancy and effective friction), (Rognon et al., 2008). The Finite Element 

Method (FEM) is not very suitable for cemented granular material, due to the very fine mesh 

needed to accurately represent the rupture of cemented elements. The Lattice Element Method 

(LEM), in between the DEM and the FEM, has been widely used within the framework of the 

statistical analysis of fracture or for cracking of concrete and ceramics [(Topin et al., 2007), 

(Topin, 2009)]. This approach considers a medium reduced as a set of nodes belonging to a 

grid. However, in the present study, once the cemented links are broken, the granular fault core 

    re o er    r     r  e    or  w     wo ’   e  o     e w      e      That is why Discrete 

Element Modelling (DEM) also seems to be a good way to complete knowledge on cemented 

materials and their influence on slip mechanisms. The increase of global cohesion (in the sense 

of Mohr-Coulomb) generated by the increase of cementation (cf. section 1.4.2) tends to a brittle 

rock behavior that can be easily schematized with DEM by cohesive and breakable bonds 

between particles changing the contact kinematics. Bonded Particle Models (BPM) are often 
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used to approximate the fragmentation process of rock (parallel bond rock model), [(Potyondy 

& Cundall, 2004), (Cho et al., 2007), (Kazerani & Zhao, 2010), (Potyondy, 2012),] or to 

represent cementation in granular mechanics (contact bond model), [(Estrada et al., 2010), 

(Jiang et al., 2013), (Das et al., 2014), (McBeck et al., 2019)]. This BPM method mostly uses 

circular particles in 2D (or spherical in 3D) connected at a point of contact and representing a 

compact and dense rock, Figure 20 (a). The objective is to be able to study the influence of the 

micro properties of grains, such as density, shape, distribution, and even grain stacking. The 

reader can access more information on the different DEM and BPM in the review made by 

(Lisjak & Grasselli, 2014). A really recent study from (Harmon et al., 2021) presents a new 

method to model cemented particles with what they call the Level Set Discrete Element Method 

for Bonded Particles (LS-DEM-BPM enabling to connect granular material with arbitrary 

particle shape existing in both 2D and 3D). They used their method to first model a granular 

fault gouge with rate-and-states friction laws and their results seem to be very promising for 3D 

modeling with real particle shapes. 

 
Figure 20. Different types of BPM (a) Clustered particles vs. clumped particles, image redrawn from (Cho et al., 

2007), and flat-joint contact model showing the effective interface geometry (from (Potyondy, 2012)] redrawn). 

Image from (Lisjak & Grasselli, 2014) (b) Example of a mixture between clasts (i.e. gravel) and matrix (i.e. sand), 

image from (Y. Lu et al., 2017). 

The modeling of matrix particles only requires the classical DEM modeling without 

cementation (only frictional contacts), with a very dense packing of fine particles. (Y. Lu et al., 

2017) modeled Irregularly Shaped Gravel Grains surrounded by sand particles, using circular 

particles to represent the sand (which is a kind of matrix in this context). Circular particles 

however tend to an initial void ratio of about 30%, which is very important within the granular 

media, Figure 20       o    e   de  er “   r  ” re re e     o      oro oï  e  e    o  [(Mollon 

& Zhao, 2012)]      e   e       o  ‘   r  ’ e e e      ro  d       r     r    er    w       o   

no initial porosity. In summary, the study of a modification in percentage of matrix particles 

within the granular fault core is similar, in some aspects, to a change in Particle Size 

Distribution, as done in [(Morgan, 1999), (Morgan & Boettcher, 1999)]. 

In this Thesis, a 2D numerical modeling of a granular fault gouge is proposed with DEM to 

study the impact of cement or matrix particles on slip mechanisms. As this new material is 

somehow complex, we decided to restrain the study to a pure dry contact mechanism but 

chose to use angular shapes of particles. 

(a) (b)
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1.5. Concluding remarks 

This chapter provided fundamental concepts and reviewed recent advances in understanding 

earthquakes, fault mechanics, and the role of granular fault gouge. The main objective of this 

Thesis work is to study the rheology and mechanics of a geological third body, more commonly 

    ed “ r     r        o  e”           e         w       o    o            er      The slip 

mechanism we are studying takes place in a mature fault (i.e. after many successive slips in 

previous geological times) that may have been cemented, or filled with matrix particles, over 

time without slip (e.g. in an interseismic period). We can therefore say that we are studying the 

reactivation of a gouge-filled fault zone, without studying the fragmentation process which is 

our starting point. Most fault core numerical models do not consider the infill material within 

the fault gouge. Moreover, the studies considering these materials with mature fault are not with 

DEM, or they use circular particles. The present Thesis proposes to combine 2D explicit DEM 

modeling with fault mechanics, and to investigate the onset of seismic sliding and slip 

mechanisms in presence of infill materials. 2D modeling still has a lot to bring to granular fault 

behavior, to which we add the originality of using realistic angular and faceted particle shapes 

for gouge particles. 
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Chapter 2. Numerical model 

description and methods 

2.1. Foreword 

In the previous chapter, we described the fault core as a granular medium. Even though certain 

continuous methods are used to model granular fault gouge, they commonly face difficulties 

sticking the reality due to the continuity assumption. As an alternative to the classical Finite 

Element Method, the Discrete Element Method (DEM) describes the flow of a granular material 

where each particle has its own behaviors and interactions. In this chapter, schematized in 

Figure 21, section 2.2 presents the DEM techniques used within the research and details the 

general contact model, governing equations, and solver. Section 2.3 proposes a method to 

model the angular shape of particles and displays the different types of granular media chosen 

to model infill materials. Finally, section 2.4 introduces the numerical framework, models, and 

choices made for granular gouge modeling. This last section also discusses the criteria and 

methods employed to calibrate and control the simulations. 

 

Figure 21. Main schema of Chapter 2. 

2.2. Discrete Element Modelling (DEM) 

The code used for the simulations, MELODY 2D (Multibody ELement-free Open code for 

DYnamic simulation), is a C++ code allowing to simulate a broad variety of granular media 

[(Mollon, 2016), (Mollon, 2018a)] in 2D. This software is a multibody code, as it can represent 
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in the same numerical framework first and third bodies with their deformation and dynamic 

(Chapter 1) keeping the discontinuity of the 3rd body. This subsection describes the DEM 

algorithms with the software MELODY. 

2.2.1. General contact algorithm 

DEM was first proposed by (Cundall & Strack, 1979). In their approach, each particle has its 

ow   o e e     d  r je  or   dr  e     New o ’    w  o   o  o     

∑𝐹𝐴
⃗⃗⃗⃗ =  𝐴 [

𝑑²𝑥𝐴⃗⃗⃗⃗ 

𝑑𝑡²
] (2.1) 

For a particle A,  𝐴 is the mass of the grain, 𝑥𝐴⃗⃗⃗⃗  is its position vector, and 𝐹𝐴
⃗⃗⃗⃗  is the resultant of 

forces acting on this particle. The movement is controlled by user-defined and physics-based 

contact interactions and constitutive laws inside the sample. 

In contrast with conventional codes (circular particles, clump logic, convex polygonal 

  r    e …              de   w     r   r r         e     d d   ere    e    or o    r    e   

from rigid circular to highly compliant angular grains.  

Figure 22 presents the two types of bodies that can be modeled with MELODY. The main 

difference is that rigid bodies are represented by nodes and segments, whereas compliant bodies 

are discretized in field nodes (this latter case is outside of the strict DEM framework, and uses 

a Multibody Meshfree Approach, [(Mollon, 2016), (Mollon, 2018a) and (Mollon, 2018b)]. 

 

Figure 22. Difference between the Compliant and rigid particle, image modified from (Mollon, 2018a). 

For our research, we do not try to model highly compliant material such as clay or talc, 

and no high deformation is observed at the grain scale. Since the use of compliant bodies 

also highly increases the calculation cost, we decided to stick with rigid bodies for the 

granular fault core particles and rock walls. 

Contact detection 

Rigid bodies are characterized by their mass (located in the center of mass) and rotational inertia 

with 3 degrees of freedom (two in displacements and one in rotation for 2D modeling). The 

contour of particles is then a succession of contact nodes and segments allowing the application 

of specific contact laws. In order to have both accurate results, and reduce calculation costs, a 
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compromise has to be found for node discretization. As an example, it was found that 32 nodes 

is an acceptable value to discretize each particle contour (Mollon et al., 2020), but it can be less 

or more according to the situation. The contact forces calculated (with a penalization method) 

are then transferred to the center of mass to solve the equations of motion. 

Since the contour of each grain is discretized by a piecewise linear frontier with nodes and 

segments, each contact considered in the code concerns a given node from a grain A and a given 

segment from a grain B. From this node and this segment, it can be computed at any moment a 

normal gap 𝛿𝑛 
 (obtained by projecting the node on the segment) and a tangential gap 

𝛿𝑡  (integrated in time based on the history of the relative motions of the node and the segment 

in the tangential direction), Figure 23. 𝛿𝑛 
 can be either negative (i.e. there is a small 

interpenetration between the grains, contact) or positive (i.e. there is a separation distance 

between the grains, no contact). The contact detection is bi-directional, meaning that each grain 

can adopt the roles of grains A and B at the same time. Edge-edge contacts hence do not need 

any special treatment in this framework, since they are automatically accounted for through 

their extremity nodes. To control overlapping, a contact stiffness is introduced in the normal 

and tangential directions (𝑘𝑛 
 and 𝑘𝑡) as well as numerical damping (𝛾𝑛 and 𝛾𝑡) in both 

directions. The normal and tangential gaps are extracted from particles geometry and 

kinematics. 

 

Figure 23. (a) Sketch of a typical contact between two grains A and B with corresponding normal and tangential 

gaps 𝛿𝑛 and 𝛿𝑡 used to control interpenetrations between particles. (b) Schema of the different parameters acting 

on a typical frictional contact, 𝑘𝑛 and 𝑘𝑡 are respectively the normal stiffness and the tangential stiffness and 𝛾𝑛 and 

𝛾𝑡 normal and tangential damping fixed within the model. 

One of the interests of this code is its ability to represent realistic angular grain shapes, where 

most of the simulations reported in the literature use circular (2D)/spherical (3D) grains. The 

contact algorithm can handle particles with complex shapes and with anisotropic orientation. 

To do so, it is divided into three main steps, (Mollon, 2018a): 

i. A broad proximity detection (Figure 24 (i)) – The objective of this first detection is to 

select pairs of close particles, considering as close any pair overlapping both when a 

projection is made on the 𝑥- and 𝑦-axis. This detection is based on a sweep-and-prune 

algorithm (Cohen et al., 1995). 
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ii. A close proximity detection (Figure 24 (ii)) – This step defines potential contact 

between a node from particle A and a segment from particle B (considering a pair of 

close particles A and B). This detection is purely geometrical and considers that each 

segment and node has its own detection zone. Users can define the time period of this 

step, as it is not necessarily at each time step. 

 

iii. A regular detection every time step (Figure 24 (iii)) – This last contact detection is 

called at each time step and only considers the actual contacting particles (i.e. some 

close proximity detections remain useless). To avoid a double detection (sharp particles) 

or loss of detection, a contact zone (i.e. contact box in the picture) is defined for each 

segment of particle A, considering only nodes of particle B inside this zone. For all the 

selected nodes (Bj) which have been detected to be in a proximity detection with the 

particle A (step i), classical mechanical and kinematics values are computed such as 

normal and tangential vectors, the projection of nodes Bj in the segment A, and the 

normal and tangential gaps (𝛿𝑛 
and 𝛿𝑡 ) used for the different contact laws. 

 

Figure 24. Three main steps of the contact detection algorithm are (i) Broad proximity detection, (ii) Close 

proximity detection, and (iii) regular detection at each time step. Images from (Mollon, 2018a). 

2.2.2. Contact laws 

As our research focuses on the study of infill materials within a granular fault gouge, the 

objective is to be able to model matrix or cemented particles. We consider within this Thesis 

two contact laws: (a) a Damped-Mohr-Coulomb contact law (used in chapter 4 for matrix 

particles), which is a classical DEM law with interparticle friction only between contacting 

particles, and (b) a Bonded Mohr-Coulomb with interparticle friction and cohesion. This 

contact law is similar to the Bonded Particle Model (used in chapter 3 for cemented particles). 

(i)

(ii) (iii)
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The Damped-Mohr-Coulomb contact law (DMC) 

In chapter 4, we will consider a fault zone that has already been sheared in previous slip 

episodes, and which is fragmented enough to observe matrix particles filling pores around big 

clasts. A classical friction law can be used to model a displacement between non-cohesive 

particles. This DMC law considers the typical geometrical and numerical parameters described 

in Figure 23 with interparticle friction only between particles in contact. Normal and tangential 

contact forces can be related with the following expression: 

|𝜎𝑡  
| ≤ 𝜇𝑛 𝑚 𝜎𝑛 

(2.2) 

With 𝜎𝑡  
and 𝜎𝑛  

the tangential and normal stresses between two particles in contact, 𝜇𝑛 𝑚 the 

interparticle friction. 𝜇𝑛 𝑚  limits the tangential force for two particles sliding over each over. 

𝜎𝑛 
 and 𝜎𝑡 can then be computed thanks to the physical and numerical parameters of the contact: 

 𝑓 (𝛿𝑛 
> 0)  𝜎𝑛 

= 𝜎𝑡  
= 0 (2.3) 

 𝑓 (𝛿𝑛 
< 0)  

{
  
 

  
 

𝜎𝑛 
= −𝑘𝑛 

𝛿𝑛 
− 2𝛾𝑛 

𝑑𝛿𝑛 

𝑑𝑡
√

 𝑎𝑘𝑛 

𝐿𝑝−𝑐 

𝜎𝑡 =   𝑛(|𝑘𝑡 𝛿𝑡 + 2𝛾𝑡 

𝑑𝛿𝑡 

𝑑𝑡
√

 𝑎𝑘𝑡 

𝐿𝑝−𝑐 
| , 𝜇𝑛 𝑚𝜎𝑛 

)

(2.4) 

𝛿𝑡 = ±
𝜇𝑛 𝑚𝜎𝑛 

𝑘𝑡

(2.5) 

𝐿𝑝−𝑐 is the numerical contact length between two particles in contact.  

The Bonded-Mohr-Coulomb contact law 

In Chapter 3, we will consider a fault zone that has already been sheared in previous slip 

episodes, and which became aged (mature) enough to observe mineral cementation between 

particles. By aged we mean with no slip for a long-time, enabling cementation or precipitation 

processes.      e  e e    re e     r   er “ o e   e”  e    or [(Riedmüller et al., 2001), 

(Wibberley et al., 2008)], this cementation can be explicitly simulated in DEM by considering breakable 

cohesive bonds between particles (Chapter 1).  

  e “ o ded  o r- o  o  ”   w   d   ed  o  o   e   r        e        ere ore      ed       

contact law is similar to the classical law previously presented, except that a numerical cohesion 

is initially added as a pressure link between particles. This contact law is close to the Bonded-

Particle-Model (BPM) from (Potyondy & Cundall, 2004) and presents two main statuses (intact 

or broken) described below: 
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1. After compaction and before shearing, all contacts for which 𝛿𝑛 
 < (𝛿𝑑𝑒𝑡𝑒𝑐 =

𝐶𝑛 𝑚/𝑘𝑛), where 𝑘𝑛 is the contact stiffness previously described and 𝐶𝑛 𝑚 is the 

   er      o e  o   re e  e   e        “      ”  Figure 25 (a). 

➢      e  o         “      ”    e  o  ow     o        re  e   re  o    ed    ed o    

purely elastic contact law: 

𝜎𝑛 
= 𝑘𝑛𝛿𝑛 (2.6) 

𝜎𝑡 = 𝑘𝑡𝛿𝑡 (2.7) 

➢ If 𝜎𝑛 
, or 𝑎𝑏𝑠(𝜎𝑡 ), exceeds the prescribed value of cohesion 𝐶𝑛 𝑚, the status of the 

 o           d  ed  o “ roke ”  Figure 25 (b). 

        e  o         “ roke ”  Figure 25 (b), either because it is a former intact bond or 

because it is newly created by grains motions at any time in the simulation, the following 

contact stresses are computed based on a purely frictional contact law: 

 𝑓 (𝛿𝑛 > 0)   𝜎𝑛 
= 𝜎𝑡 = 0 (2.8) 

 

 𝑓 (𝛿𝑛 < 0)   {
𝜎𝑛 

= 𝑘𝑛𝛿𝑛

𝜎𝑡 =   𝑛(𝑘𝑡𝛿𝑡,  𝜇𝑛 𝑚𝜎𝑛 
)

(2.9) 

 

Figure 25. (a) Intact bond. Initialization of the contact law. A cohesive law links all grains in contact. The bond 

corresponds to a constant pressure to maintain particles in contact (Pa). (b) Broken bond. When the force applied 

to the particles becomes higher than the cohesive strength, the bond is broken. The contact becomes cohesionless 

and follows a classical Mohr-Coulomb law with interparticle friction only. Broken contacts cannot be cohesive 

again and this induces an augmentation of broken bonds during the shearing. Normal interpenetration is 

exaggerated in the figure for the sake of clarity. 

From these stresses, the associated contact forces (in the normal and tangential direction, as 

well as the associated torque) are computed on each grain, by considering that contact stresses 

act on a contact length 𝐿𝑝−𝑐  (equal to the sum of half-lengths of the segments around contact 

nodes in grain A): 

A

B

A

B

 𝐹 𝛿𝑛 < 𝛿𝑑𝑒𝑡𝑒𝑐

𝜎𝑛 = 𝑘𝑛𝛿𝑛

𝜎𝑡 = 𝑘𝑡𝛿𝑡

(a) Intact bond

Friction 𝜇𝑛 𝑚 / No cementation

𝛿𝑛

𝜎𝑛 = 0

𝜎𝑡  = 0

(b) Broken bond

 𝐹 𝛿𝑛 > 0  𝐹 𝛿𝑛 < 0

𝜎𝑛 = 𝑘𝑛𝛿𝑛

𝜎𝑡 =  in (𝑘𝑡𝛿𝑡 , 𝜇𝑛 𝑚𝛿𝑛)

𝐿𝑝−𝑐

Bonded 𝐶𝑛 𝑚  / No friction

𝐶𝑛 𝑚
A

B

A

B
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𝐹𝑛 = 𝐿𝑝−𝑐  𝜎𝑛 
(2.10) 

𝐹𝑡 = 𝐿𝑝−𝑐  𝜎𝑡 
(2.11) 

These laws are completed by a classical viscous dashpot to dissipate kinetic energy by contact 

damping and to stabilize the simulation (𝛾𝑛 & 𝛾𝑡), Figure 23. 

The numerical cohesion 𝐶𝑛 𝑚 considered in the code cannot be directly related to real 

cementation in rocks and does not bear much physical meaning by itself. A good way to 

associate a quantitative description to this numerical parameter is to define an associated level 

of cementation. It will be defined in Chapter 3. 

2.2.3. Solver and numerical parameters 

The DEM methods are divided into two main categories based on the type of contact between 

bodies, the deformability representation of particles, the contact detection of particles, and the 

resolution of the equations of motion (Lisjak & Grasselli, 2014): (i) Distinct Element Method 

(DEM) with explicit time-domain integration scheme for equations of motions (for both rigid 

and deformable bodies) [(Cundall & Strack, 1979) & codes from Itasca Consulting group]; (ii) 

the implicit DEM, or Discontinuous Deformation Analysis (DDA) method, which has almost 

disappeared, and (iii) the N    “No -  oo    o              ” (Jean, 1999). Very heavy 

in computing time, simulations are nevertheless limited in terms of number of particles or 

simulation time and it can be very advantageous to carry out parallelization of calculations. 

MELODY uses an explicit solver to integrate in time the deformation and motion of each 

particle (Mollon, 2018a). 

Code resolution scheme 

At the beginning of the simulation, it is possible to choose about using a constant time step or 

an adaptative time step ∆𝑡 (meaning that the value of the time step is automatically calculated 

from previous errors). In order to quantify the difference between adaptive time step and 

constant time step, studies have been carried out with mass scaling of particles (Appendix 2. 

A). It appears that the evolution of the effective friction (peak and steady-state) is quite different 

depending on whether we used an adaptive time step for the calculations or a constant time step. 

Indeed, the adaptive time step of the software MELODY has been coded for compliant particles, 

having no or very little numerical stiffness. If a high numerical stiffness is used within the 

contact, it will disturb the adaptive computation of the time step. It is, therefore, preferable to 

use a constant time step in these simulations with rigid bodies. The value of the time step used 

is provided in each corresponding chapter. The main algorithm is parallelized for each time step 

following the scheme provided in (Mollon, 2018a). 

Choice of numerical parameters 

In order to have meaningful particular contacts for particles considered as rigid, it is important 

to limit the interpenetration between two particles. This interpenetration is limited to a certain 

percentage (e.g. 1% or 0.1%) of the size of the smallest particle. In addition, the interparticle 
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stiffness was also calibrated to have a consistent value of equivalent Young modulus regarding 

the other parameters used within each model (detailed value in each corresponding chapter). 

The damping value is constant and chosen equal to 0.2. According to the parameters chosen 

within the model and the equations of motion, it is then possible to compute the magnitude of 

the time step Δ𝑡 necessary for the simulation (and that has to correspond to Verlet schema): 

Δ𝑡 = 𝑒√
 𝑚𝑖𝑛

𝑘𝑛 𝐿𝑝−𝑐 
(2.12) 

Where 𝑒 is a chosen parameter around 1/50,  𝑚𝑖𝑛 the mass of the smallest particles, 𝑘𝑛 the 

interparticle stiffness and 𝐿𝑝−𝑐  the contact length. In most cases, although it is important to 

have a high enough stiffness to limit interpenetration, a too high stiffness is disadvantageous 

for the time step. In this assumption 𝑘𝑛 is considered as a numerical parameter and if it increases 

too much it can lead to high numerical costs. In our simulation 𝑘𝑛 is both a numerical and a 

physical parameter as it represents the characteristic deformability of the materials considered. 

In this case, there is no real cost-accuracy compromise but rather a physical calibration. 

Granular fault zone and rock walls are considered piecewise-rigid with a constant 

numerical stiffness used to limit interpenetration between grains while mimicking the local 

deformation of the grains in the contact vicinity (value detailed in every model in chapters 

3 and 4). An explicit solver is used (Symplectic Euler scheme), to integrate in time the 

motion of each body. 

2.3. Generation of a numerical gouge layer 

In this thesis, we have chosen to represent angular-shaped gouge particles. For this purpose, we 

have presented in the previous section, the DEM code MELODY which allows managing the 

contacts between complex shapes of particles. This section presents a method to generate 

angular-shaped gouge samples. 

How to create non-spherical particles? 

Some authors highlighted the limitations of the software Particle Flow Code with circular 

particles (PFC2D from ITASCA Consulting Group 1995) and suggest the use of a cluster of 

particles rather than single particles allowing for a more realistic grain shape than disks (Cho et 

al., 2007). Other researchers tried to represent a more realistic shape of particles, but they were 

mainly based on geometric simplifications and disc combinations (cf. Clump or Cluster Particle 

Model), [(Guo & Morgan, 2004), (Cho et al., 2007), (Ferellec & McDowell, 2008), (Kenichi 

Maeda et al., 2010), (Härtl & Ooi, 2011), (Zhou et al., 2017)]. For these geometric shapes, 

contact parameters need to be adjusted to mimic a more realistic shape with pre-calibrated 

parameters such as inter-granular friction, stiffness, or viscosity. Only a few of them represent 

angular particle shapes [(Nouguier-lehon et al., 2003), (Kawamoto et al., 2018), (Mollon et al., 

2021b)].  
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A relevant approach to generate realistic shapes of particles based on Fourier Descriptors has 

been developed in both 2D (Mollon & Zhao, 2012) and 3D (Mollon & Zhao, 2014). The authors 

identify statistical properties for unique particle shape characteristics gathered in a Fourier 

spectrum (projected contours of grains, Figure 26 (a)), with which they perform an inverse 

Fourier transform in order to obtain the real angular shapes, Figure 26 (b). The 2D DEM code 

called MELODY2D (Section 2.2) can deal with the contact interaction of these complex shapes 

in 2D, but the associated 3D-DEM code is not yet available. 

The Matlab package Packing2D1 is employed in the present work to create our granular 

samples. It is based on a Fourier-Voronoï method and generates a set of grains with user-

defined size distribution and control on key morphological descriptors (such as elongation, 

circularity, and roundness). This control is performed by choosing a Fourier spectrum that 

quantifies the frequencies and amplitudes of the grain surface asperities. The advantage of 

this code is to create granular media with complex particle shapes, such as angular and 

faceted particles impossible to generate from the DEM code itself. More information is 

available in (Mollon & Zhao, 2012) and (Mollon & Zhao, 2014) for 3D particles. 

 

Figure 26. (a) Example of particles from a selected spectrum: first a random sampling of phase angles, then the 

computation of the random signals r(θ), and finally plotting of the corresponding particles contours by varying 

elongation or shape of particles. Image modified from (Mollon & Zhao, 2012) (b) 3D cell-filling algorithm: a. 

Polyhedral cell to be filled; b. Same cell expressed as a geodesic structure; c to i. Particle filled in a cell with 

increasing fitting parameter from 0 to 2562. Image from (Mollon & Zhao, 2014). 

2.3.1. Method for granular sample creation 

The code Packing2D is divided into three main steps based on coupled Bounded Voronoï 

tessellation and Inverse Monte-Carlo Method: 

                                                 
1 Packing 2D is available for download at http://guilhem.mollon.free.fr 
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− The first step generates a constrained Voronoi Tessellation, Figure 27, with polygonal 

subdomains following a target size distribution and cells orientation. 

 
Figure 27.  Example of Voronoi Tesselation generated with Packing2D. Fractal distribution of particles. 𝑡ℎ𝑖 is the 

initial thickness of the numerical gouge and 𝐿𝑔 the length of the numerical gouge, both in meters.  

The user chooses the size of the granular sample created (creation of the domain 𝑡ℎ𝑖  x 𝐿𝑔 in 

Figure 27) and the number of granular particles N. Then the type of distribution wanted, such 

as fractal, Gaussian, uniform, lognormal, bimodal, can also be specified. Finally, the Voronoi 

Tesselation evolves over several iterations, according to the target error allowed (specified by 

the user), until it reaches, as much as possible, the model characteristics chosen. 

− Within Step 2, the user can define the shape of particles wanted, based on a Spectrum 

of morphologic descriptors, called Fourier descriptors, (complete procedure in (Mollon & 

Zhao, 2012)). The code considers a contour of particle discretized by  𝑖 points separated by an 

angle  𝑖 at a certain distance  𝑖  from the centre of the particle, Figure 28 (a). According to 

Discrete Fourier Transform (DFT), the signal   (  ), Figure 28 (b), can be written as the sum of 

N harmonics:  

  (  ) =  𝑜 +  ∑[𝐴𝑛 cos(𝑛 𝑛) +  𝑛 sin(𝑛 𝑛)] 

𝑁𝑖

𝑛=1

(2.13) 

Where  𝑜  is the average radius. Then each harmonic n allows defining a normalized amplitude 

𝐷𝑛      ed “ o r er  e  r   or”   

𝐷𝑛 =
√𝐴𝑛

2 +  𝑛
2

 𝑜
(2.14) 

These normalized amplitudes, presented in Figure 28 (c), correspond to different morphologic 

descriptors of particle contours known in granular mechanics as Elongation, Roundness, 

Circularity, and Regularity, (Mollon & Zhao, 2012). 

The Fourier Descriptor 𝐷2 essentially affects particle elongation (or the ratio between the 

smallest dimension of grain under a direction oriented in a particular angle), and has limited 

influence on the roundness of particles. Descriptors 𝐷3 to 𝐷8 define the shape modes or the 

importance of main irregularities within the grain contour. For example, a reduction of 𝐷3 leads 

to rounder particles in Figure 29 (a) and (b). Finally, descriptors higher than 𝐷8 characterize the 

roughness, considered as small irregularities within the contour increasing with 𝐷8 value, 

Figure 29 (c). An inverse Fourier Transform on normalized amplitudes allows getting the real 

shape of a particle in a 2D domain as presented in Figure 28 (a). 

𝐿𝑔

𝑡ℎ𝑖
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Figure 28. Process of grain shape characterization. (a) The contour of a particle discretized by  𝑖 points, each point 

is associated to a radius and position angle in polar coordinates (b) Signal described by the position of the  𝑖 points 

in polar coordinates (c) Fourier descriptors as a function of the mode. The two decays observed within shape modes 

and roughness modes are described by: 𝛥1 = 2𝜆1 log2(
𝑛

3
)+log2(𝐷3) (𝑓𝑜  3 < 𝑛 < 8) and  𝛥2 =

2𝜆2 log2(
𝑛

8
)+log2(𝐷8) (𝑓𝑜  𝑛 > 8). With 𝜆1 and 𝜆2 two constants equal to -2. 

 

Figure 29. Example grain samples with different Descriptor variation. (a) 𝐷3 = 0.1 (b) 𝐷3 = 0.03, (c) particle 

with different D8 for 𝐷2 = 𝐷3 = 0 (i.e. circular particle), last image from (Mollon & Zhao, 2012). 

− The last step of the code, Figure 30, consists of randomly filling the initial Voronoï 

Tesselation (Figure 27), with the spectrum of granular particles created, Figure 28 (a). It is 

possible to both play on the initial solid fraction (percentage of filling of the Voronoi cell) and 

faceting of particles (more or less tangential to cell contours). Once the entire sample has been 

generated, it is possible to recover data such as the areas of grains generated  𝑝, their position, 

and parameters as the inscribed and circumscribed radii, etc. 

  Elongation mode

     

Shape modes
  >   

Roughness modes

  =  Normalisation(c)

0 2 4 1086 20

0.1

0

0.2

0.3

(b)

R
ad

iu
s 

r

Angle  
0 𝜋 2𝜋

1

1.4

 𝑖 points

y

x

 𝑖
 𝑖

𝑃𝑖

 𝑖 points

(a)

(a)

(b)

(c) 𝐷8  a iation

𝐷2 = 𝐷3 = 0 𝐷8



 
58 Chapter 2. Numerical model description and methods 

 

Figure 30. Voronoi cell (red) and grains generated inside the cell (blue), image modified from (Mollon & Zhao, 

2012). To have grains with flat facets, the optimization parameter  𝑂𝑝𝑡𝑖𝑚 can vary between 0 and 63, where 0 

corresponds to a grain as defined in the spectrum and 63 a grain as much as possible with facets. Increasing this 

parameter is very helpful to have angular particle shapes, but it also increases a lot the calculation costs during 

sample generation. By increasing the target Solid fraction 𝐹𝑆 (equal to   𝑝⁄ ), it decreases the compaction time of 

the granular sample. However, the final solid fraction of the sample also depends on how the grains will conform 

to the shapes of the Voronoi cells formed. 

2.3.2. Three types of granular samples 

This section presents the three different granular samples designed for the Thesis and used 

within the next chapters. It displays the type of granular samples, details numerical parameters, 

and shows a final representation of the numerical sample. 

(i) Grains with angular shape (Chapter 3)  

Mineral grains morphologies can be very diverse, but as mentioned in Chapter 1, granular 

gouges generated by comminution are expected to exhibit rather rough and angular shapes. To 

be closer to these shapes, angular and faceted particles are chosen to be modeled for the main 

granular sample of the Thesis. Since the morphological descriptors of the grains of granular 

gouges may vary significantly between faults, we calibrate our spectrum by visual comparison 

with published pictures of real gouges, Figure 31 (a) (more granular fault sample image library 

in Appendix 1. A). After several trials and variations of the Fourier descriptors, a suitable 

typical grain shape is selected, Figure 31 (b). The chosen numerical Fourier descriptors and 

numerical parameters are gathered in Table 1. 

 

Figure 31. (a) Quartz, photomicrograph (crossed polars) of ATTL fault gouge from (Muto et al., 2015). (b) Zoom 

on a granular sample generated with packing2D, with angular and faceted shapes, and compacted in MELODY2D. 

Input parameters in table Table 1. 
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Table 1. Input Parameters in Packing 2D to generate the sample. 𝐷2 to 𝐷8 are Fourier descriptors,  
𝜆1 and 𝜆2 are the two constants needed to calculate the two decays 𝛥1 and 𝛥2 (formulas in Figure 28).  
 𝐹 and  𝑂𝑝𝑡𝑖𝑚 comes from the cell filling step in the legend of Figure 30. 

Fourier Spectrum properties Cell filling 

𝐷2 𝐷3 𝐷8 𝜆1 𝜆2 𝐹𝑆  𝑂𝑝𝑡𝑖𝑚 

0.2 0.1 0.01 -2 -2 1 63 

(ii) Matrix particle sample (Chapter 4) 

For matrix particles, we consider fine particles in a very dense packing. To generate this kind 

of particle, a small code called Cvoro (C++) is used. In fact, this code is a simplified version of 

the previous method presented with a Voronoï tessellation algorithm, allowing to create a dense 

packing of polygonal particles.  

It is possible to choose the size of particles ∅𝑒𝑞 (equivalent diameter of particles, calibrated on 

 o     re     d    o   e “ er  r    o    r  e er ” 𝑃0.𝑖 (i.e. the homogeneity/regularity of the 

hexagonal cells). Figure 32 displays the three types of shape of matrix particles used in Chapter 

4, with a variation in perturbation parameter. The equivalent diameter of particles ∅𝑒𝑞 was 

chosen equal to 20 𝜇  (Appendix 2. B). The initial porosity, or void fraction 𝐹𝑣 =

 𝑣𝑜𝑖𝑑𝑠 ( 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 +  𝑣𝑜𝑖𝑑𝑠)⁄  within the sample is negligible, with less than 1%, which leads to a 

state of compaction very close to intact rocks. 

 

Figure 32. Change in the perturbation of particles, from 𝑃0.2 to 𝑃0.8 modifying the final cell shape, from hexagonal 

cells to angular polygonal cells. 

(iii) Granular sample with matrix particles (Chapter 4) 

This last type of granular sample is a combination of the two previous samples, Figure 33. The 

method first consists in identifying the overlapping zones between the matrix sample and 

angular particles. Then matrix cells that most fit the contour of angular particles are kept and 

matrix cells located in the geometrical domain of angular particles are removed. The final 

roughness of angular particles is not identical to the initially generated contour, but the choice 

of a small enough size of matrix cells enables to maintain the global shape of angular particles. 

These three types of samples will be used all along the Thesis with some variations on 

physical and geometrical parameters and contact laws. More details are provided in each 

associated chapter. 

𝑃0.2 𝑃0. 𝑃0.8

 𝑒𝑞 = 20𝜇 

 𝑒𝑞
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Figure 33. Zoom in on the merged sample with matrix cells and angular particles. For this last sample type, matrix 

cells have an equivalent diameter ∅𝑒𝑞 = 20 𝜇  and a perturbation  𝑃0.𝑖 = 0.5. 

2.4. Numerical framework  

2.4.1. Direct shear modeling 

Within this Thesis, direct shear modeling was chosen to simulate faulting and to allow 

comparison with Laboratory experiments. This subsection presents the different steps of a 

simulation, the assumptions, and the configuration of final models. Details on each model type 

will be discussed in the corresponding chapters. 

Compaction step 

Once the granular sample is generated with Packing 2D, it is then inserted between two rock 

walls in the pre-processing step. The first simulation step consists of compacting the sample 

with the chosen normal stress to obtain a mechanically stable packing of grains with a controlled 

granular density, Figure 34 (a). We observe that the interparticle friction used during 

compaction controls the initial porosity within the sample (Appendix 2. C). When the granular 

sample is compacted and mechanically stable, the appropriate mechanical laws between 

particles in contact are implemented, Figure 34 (b). 

 

Figure 34. Compaction of the granular sample (a) Step 0, before compaction of the sample, (b) Step 1, just after 

compaction. 𝜎𝑁 is the normal stress applied on the upper rock wall and 𝑡ℎ𝑖 is the initial gouge thickness at the end 

of the compaction step. 
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Overview of the sheared granular fault model 

Once the pre-processing step has been completed (application of contact laws and physical 

parameters), direct shear experiments can be settled. Figure 35 presents the 2D-DEM model of 

the simulated granular fault gouge, with rock walls at the top and bottom sides of the granular 

sample. In the following chapters, different granular materials are implemented as briefly 

described in the previous subsection. However, all the models present the same structure and 

external parameters: the lower wall is fixed, while normal stress (𝑦-direction) and a sliding 

velocity (𝑥-direction) are applied on the upper rock wall (defined in next section 2.4.2). Gravity 

is ignored in the model, assuming that the fault can be oriented in a wide range of directions, 

and that gravity forces are negligible compared to those related to normal and deviatoric stresses 

applied on the gouge. Periodic boundary conditions are present on both right- and left-hand 

sides of the sample to maintain the continuity of the movement at large slips, as a difference 

with (Gao et al., 2018) simulations. The movement of the upper rock wall in the 𝑦-direction 

remains free to accommodate dilation or compaction of the sample. 

A dry contact model is considered here, to investigate infill material influence, without fluid. 

Fault gouge and rock walls are considered rigid with a constant numerical stiffness used to limit 

interpenetration between grains (identical for normal and tangential directions) while 

mimicking the local deformation of the grains in the contact vicinity (section 2.2). The 

tangential and normal numerical stiffnesses are equal in this model and grain comminution is 

disregarded. In this study, we choose to simulate a density of 2600 kg/m3 for particles, leading 

to an appropriate time step for these simulations of 10-9 s. An explicit solver is used (Symplectic 

Euler scheme) to integrate in time the motion of each body.  

 
Figure 35. Schema of the DEM model of a granular fault gouge 

Interparticle friction is equal to 1 at the contact interface between walls and particles to make 

sure that the motion is fully coupled at the wall-grains boundary. The interparticle friction 𝜇𝑛 𝑚 

between particles in contact is in the range of 0.3 − 0.5 in the different Chapters. These values 

are often used in DEM gouge experiments and are in the range of interparticle friction found 

for two mineral particles in contacts [(Sandeep & Senetakis, 2019) & (S. Kasyap & Senetakis, 

2020)].  
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Measure and control during the simulation 

To characterize the slip behavior within the simulation, different quantities and parameters are 

extracted, calculated, and observed during simulations. These results are then stored at various 

time intervals (~10−6 − 10−8s, depending on the model): 

− A typical quantity investigated all other the manuscript is the effective friction 𝝁∗ =

 𝝉   ⁄  (Chapter 1), Figure 36 (a). This effective friction is not to be confused with the 

Mohr-Coulomb coefficient of friction 𝜇𝑓 or interparticle friction 𝜇𝑛 𝑚. Effective friction 

is recovered at the interface between the gouge and the upper rock wall, with 𝝉 depending 

on the normal stress applied on the rock wall, Figure 36 (b). The same quantity is used in 

other researches [(GRD Midi, 2004), (Azéma & Radjaï, 2014), (Berger et al., 2015)]. It 

is also important to differentiate the effective friction peak μp
∗  (maximum effective 

friction) and the steady-state effective friction 𝜇𝑠𝑠
∗  which is the average value of the 

effective friction once the plateau zone is reached and for a constant applied shearing 

velocity, Figure 36 (a). 

− The dilation of the granular sample is also measurable and corresponds to the thickness 

variation ∆𝑡ℎ in the vertical direction, divided by the initial granular sample thickness   

𝜺𝒚 = ∆𝒕𝒉 𝒕𝒉𝒊 
⁄ , (as the uppe  wall is displace ent f ee in the y − di ection). 

− The initial surface percentage of porosity (𝑷𝒑 𝒓𝒆) within the sample is the total surface 

of voids divided by the total surface (voids and particles) 𝑷𝒑 𝒓𝒆 =

  𝟎𝟎 (𝑺𝒗 𝒊𝒅𝒔 𝑺𝒈 𝒖𝒈𝒆). ⁄ It can also be expressed by the mean of the void ratio 𝐹𝑣𝑜𝑖𝑑 and 

Solid fraction 𝐹𝑠, which is  𝐹𝑣𝑜𝑖𝑑 = 1 − 𝐹𝑆, (Appendix 2.C). 

− For each model, particles' granular flow needs to remain in a quasi-static regime in order 

to avoid inertial effects within the simulation. A way of quantifying this is to calculate 

the Inertial number  𝑝, which is a dimensionless number used to measure the inertial 

effects for dry granular flow in-plane shearing [(Pouliquen & Forterre, 2002), (Iordanoff 

& Khonsari, 2004), (Da Cruz et al., 2005), (Jop et al., 2006), (Pouliquen et al., 2006)]: 

 𝑝 =
|�̇�| 𝑎𝑣 

 

√𝜎𝑁 𝜌𝑝⁄
(2.15) 

With 𝜎𝑁 being the applied stress,  𝑎𝑣 
the mean particle diameter (or it can be the local 

mean particle diameter defined by volume fraction of each size), 𝜌𝑝 the density of particles 

and the shearing rate �̇� = ∆𝑣 𝑡ℎ ⁄ . A quasi-static regime is observed for  𝑝 ≤ 10−3, then 

 𝑝 characterizes a transitional regime until reaching 0.2 ≈  𝑝. For 0.2 <  𝑝 , the regime is 

considered as collisional with dynamics becoming dependent on the particle restitution 

coefficient. Moreover, the particle size distribution within the sample can highly modify 

the granular flow and its behavior (Pouliquen, 2011). 

Dedicated post-processing tools are also used in order to analyze the spatial distribution of the 

solid fraction, force chains, or velocity fields patterns during the onset of slip, in order to bring 

a new understanding of the physics observed from a granular point of view. 
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Figure 36. (a) Typical friction curve as a function of slip displacement of the upper rock wall. 𝜇𝑝
∗  is the effective 

friction peak, i.e. maximum effective friction, and 𝜇𝑠𝑠
∗  is the steady-state effective friction, which is an average 

value of the effective friction once the plateau zone is reached (also called residual friction). (b) Schema of the 

sheared gouge with the total normal and tangential forces (𝐹𝑁 & 𝐹𝑇) applied on the upper rock wall. 

2.4.2. Main assumptions of the model 

Due to the complexity of the parameters involved in the behavior of fault gouges (Chapter 1), 

it was decided to fix some physical parameters. In this section, we present the assumptions and 

choices that will be kept in the next chapters. 

Normal stress 

The model aims to simulate a sheared granular fault zone, subjected to a normal stress 

proportional to the depth of the fault. The pressure exerted by the rocks above the fracture is 

represented by the application of a normal stress to the wall in the 𝑦-direction. The fault is 

modeled parallel to the surface, for the sake of simplicity, but it is a simplification, as it is 

clearly not the case everywhere (Giorgetti et al., 2019). The normal stress, as well as the shear 

rate, are non-negligible parameters of the gouge model (Chapter 1), that must be chosen with 

precision to have a meaningful model (Aharonov & Sparks, 2004). Parametric studies were 

carried out with different normal stresses, 1, 5, 10, 40 & 100 𝑀𝑃𝑎, for a sheared granular gouge 

with 2500 angular particles (size of the 2D granular sample 2x10mm²). Figure 37 (a) presents 

the effective friction (peak and steady-state) and dilation as a function of the applied normal 

stress (𝑀 𝑎). For the cases studied, 0.5 ≤ 𝜇𝑝
∗ ≤ 0.6   d          de re      w          re  e    

 or      re    The 𝜇𝑠𝑠
∗  value is similar and equal to ~ 0.45 for all cases except for the 1 𝑀𝑃𝑎 

case, which is supposed not enough constrained relatively to the interparticle stiffness applied 

between particles. The variation amplitude of effective friction oscillations is decreasing 

towards the same behavior with increasing normal stress. The evolution of dilation is almost 

similar to effective friction peak evolution with a decrease at 100 𝑀 𝑎, meaning that the too 

high pressure prevents sample dilation. In our results, a clear quasi-static regime is only 

observed with a normal stress above 10 𝑀 𝑎 and begins to stabilize with 𝜎𝑁 = 40 𝑀 𝑎, Figure 
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37 (b). A possible interpretation is that in the range 5 − 40 𝑀 𝑎, the 3 quantities (friction & 

dilation inertial number) are constant and considered as the domain of validity of your model. 

Outside this range, different effects disturb the results. For low stresses, it is certainly due to 

the inertial number (much higher than for other cases), and for high stresses, it may be caused 

by important interpenetrations between grains and to the collapse of the assumption of rigid 

grains. Increasing the normal stress until 100 𝑀𝑃𝑎 will imply adjusting numerical stiffnesses 

within the model to limit overlapping caused by the high-pressure increase, and will thus 

increase calculation costs. As normal stress is also known to control the shear modulus of the 

granular sample (Lyu et al., 2019), it will imply a material with a nonphysical Young modulus 

in our case. 

Regarding the stabilization of our results after 10 𝑀𝑃𝑎, the results from the literature, 

and trying to limit calculation costs, we decided to focus on a medium value of normal 

stress of 𝟒𝟎 𝑴𝒑𝒂 for all the Thesis experiments. This pressure corresponds to a depth 

of about 1.5 𝑘  which is the early beginning of the natural seismogenic zone and it is 

also an interesting depth for all geoengineering studies, such as enhanced Geothermal 

Systems. 

 

Figure 37. (a) Effective friction 𝜇 
∗and dilation 휀𝑦 as a function of normal stress 𝜎𝑁 (MPa) (b) Steady-state inertial 

number  𝑝 as a function of normal stress. 
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Shear velocity 

The shearing rate is also a difficult parameter to choose and mainly depends on the type of 

earthquake studied. The increase of velocity induces a modification in the contact law basically 

presenting a peak of effective friction and a weakening until a steady state. Small initial tests 

have been carried out to see the global influence of shearing velocity within the model of a 

sheared granular gouge with 2500 angular particles (size of the 2D granular sample 2x10   ²). 

Figure 38 presents effective friction, dilation, and inertial number as a function of different 

shearing velocities, 0.01, 0.1, and 1  /𝑠. The gouge has been sheared with the applied normal 

stress of 40 𝑀𝑃𝑎 for the first case and 10 𝑀𝑃𝑎 for the other ones. In all the simulations, the 

inertial number is observed to be bellow 10−3, Figure 38 (b), indicating that the granular flows 

observed remain in the quasi-static dense granular flow. 

The obtained results are pretty similar in terms of effective friction and dilation. That is 

why, to have observable results in a reasonable computation time while avoiding 

disturbing inertial effects since the dimensionless inertial number, we chose a shearing 

velocity of   𝒎/𝒔 for the rest of the Thesis. 

 

Figure 38. (a) Effective friction 𝜇 
∗(at peak and steady-state) and dilation 휀𝑦 (at steady-state) as a function of the 

shearing velocity (m/s), (b) Steady-state inertial number as a function of shearing velocity (m/s) 

Effect of grain shape (circular vs angular particles) 

To be closer to fault gouges observed within fault cores, angular and faceted particles are 

employed in this Thesis. However, to validate the importance of modeling these shapes of 

grains compared to circular shapes, and compare our model with literature, two samples were 

implemented: one with angular and faceted particles (the one used for the study) and another 

one with circular grains. This second sample is then discarded in the next chapters, but the 

results are presented in this subsection. The numerical and physical characteristics of both 

samples are presented in Appendix 2.D.  
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The granular layer with circular shapes of grains is generated with the same parameters as the 

one with angular particles, Figure 39 (a) & (b). But due to the circular shape of particles, the 

fractal dimension is a bit lower with 𝐷 =  2.5 (vs 𝐷 = 2.6 for angular sample) and with a 

corresponding equivalent diameter in the range 20 – 181 µ  (vs 28 – 226 µ  for angular), 

Figure 39 (c). To have the same initial gouge thickness (1.7   ) and a similar total surface of 

particles (26 mm² for circular particles and 29   ² for angular particles), the gouge with 

circular particles is composed of 7515 grains. 

The two samples (circular and angular) are sheared with the same parameters (Appendix 2.D) 

and with a simple friction law to consider a typical case with only frictional contacts. As in 

previous studies, the effective friction is smaller for circular grains and steady-state effective 

friction tends to 0.45 for angular grains and 0.3 for circular grains, Figure 40. Because of their 

invariance by rotation, smooth spherical shapes tend to roll to accommodate deformation of the 

grain assembly whereas interlocking between angular grains tends to promote dilation 

(Anthony & Marone, 2005). The effective friction observed with our results is lower than for 

3D experimental studies ((Frye & Marone, 2002) and Chapter 1). However, gouge behaviors 

obtained fit well with previous 2D results with angular and circular shapes [(Jensen et al., 1999), 

(Mair et al., 2002), (Nouguier-lehon et al., 2003), (Guo & Morgan, 2004)]. It was also shown 

recently that mechanical effects of grains surface roughness can only be mimicked by 

intergranular friction to a certain extent, and that proper modeling of the shear behavior of 

granular samples requires realistic shapes (Mollon et al., 2020). Here the large fractal dimension 

D promotes a stable sliding even for circular particles (Morgan & Boettcher, 1999). 

 

Figure 39. (a) Granular sample generated with packing2D, with circular shapes, and compacted in MELODY2D 

(b) Granular sample generated with packing2D, with angular and faceted shapes, and compacted in MELODY2D. 

(c) Log-log graphs showing the cumulated number of particles (Y-axis) plotted against particle equivalent 

diameters (X-axis) from the numerical gouge sample with CDF (Cumulative Distribution Function). The fractal 

dimension D equals 2.65 for angular grains (blue line) and fractal dimension D equals 2.5 for circular grains (green 

line). They have almost the same total surface of particles (26 mm² vs 29 mm²). 
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Figure 40. (a) Effective friction for samples with angular or circular shapes of grains as a function of the slip 

d      e  μ             o    r    o   μ              o  o    e      d      e  μ     or       r or   r    r     e   

Table 2. Numerical and physical characteristics. 

The results confirm that the behavior of angular and circular grains, without cementation, 

is different, and using circular shapes is disadvantageous for the strength of gouge behavior 

and is not reflecting real contact interactions. The next chapters will thus deal with non-

circular particles. 

Representative Surface Element (RSE)  

To justify that the size chosen for gouge samples is a RSE, three different lengths of models 

have been studied with identical numerical parameters and identical gouge thickness (~ 2   ). 

The different sizes of models (6x2   ², 10x2   ², and 20x2   ²) induce a change in the 

total number of particles to keep the same equivalent diameter for particles (respectively 1500 

grains, 2500 grains, and 5000 grains). By increasing the number of grains in the model, as well 

as the length of the gouge, similar behaviors of the sheared gouge layers are observed. The 

effective friction coefficient follows the same trend for the three model sizes. The effective 

friction peak 𝜇𝑝
∗  is also of the same order of magnitude (0.73 −  0.78), Figure 41. As the 

number of grains increases, there is, therefore, an increase in normal and tangential forces 

applied to the upper rock wall, but the higher number of grains makes it possible to maintain 

similar effective friction in the three models. Moreover, by comparing force chains in the gouge 

for the three models, we do not see significant changes, Figure 42 (a). They are oriented at 30 −

45 ° relatively to the upper rock wall and normal forces seem oriented in this same direction, 

Figure 42 (b). 
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Even though the three models showed similar behaviors, we selected the model with 

5000 particles, in order to have a chance to observe local mechanisms and rupture 

patterns (more difficult with smaller length). It is therefore not necessary to represent a 

larger model for this type of micromechanical study. It would have been interesting to 

do the same kind of experiment by modifying the thickness of the gouge layer, as it is 

known as a really influent factor in the contact mechanisms (Chapter 1). However, by 

changing this thickness, we also modify the RSE in length, the model studied is therefore 

a compromise between length, gouge thickness and number of grains in the thickness. 

We judged that our models allow being in the case of a mature enough fault gouge to 

observe deformation patterns with a gouge thickness fixed at around 2    (a value 

consistent with the literature (Rice & Cocco, 2002)). 

  

Figure 41. Effective friction 𝜇 
∗(at peak and steady-state) and dilation 휀𝑦 (at steady-state) as a function of the 

number of grains in the model. A slightly higher 𝜇𝑝
∗  is observed for the case with 2500 grains, probably due to a 

slightly different stacking of the particles during the sample compaction. The effective friction curve obtained with 

the 1500-grains sample is noisier because the dynamic effects are more noticeable with fewer grains. 

 
Figure 42. (a) Force chains magnitude in Newton for 1500 grains, 2500 grains, and 5000 grains – (b) Number of 

contacts with a normal vector oriented in a given direction (using polar diagrams where the Theta-axis is the 

orientation and the R-axis is the number of contacts). Normal forces orientation as a function of the model, at 

steady state. Small sample with 1500 particles in red, the middle sample with 2500 particles in green, and the 

bigger sample in blue. 
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Stability conditions 

The granular literature related to fault mechanics often explores stick-slip instabilities, 

considering strain energy storage either at grain-scale [(J. Leeman et al., 2015), (Dorostkar et 

al., 2018)] or in the loading system (Sathwik Kasyap & Senetakis, 2021) and can thus be carried 

out in a stable or unstable way. Our model is not totally realistic as, the sliding is imposed by 

the Boundary Conditions, and the non-deformability of the rock does not allow energy storage 

within the fault system. Although such energy storage is not present in our simulation, it is to 

be kept in mind from the perspective of upscaling the frictional behaviors we report to actual 

fault dynamic systems. 

2.5. Concluding remarks 

This chapter has detailed the main principles of the Discrete Element Method (DEM) and how 

to apply it to a granular fault gouge containing infill materials such as mineral cementation or 

fine matrix particles. For that purpose, in the first part, the general algorithm has been detailed, 

as well as the contact laws which will be used in the following chapters. In a second part, we 

proposed a numerical tool to create a numerical gouge sample with angular and facetted shapes 

(Packing2D). This method allows creating three main types of granular samples: a fault gouge 

with angular particles in which cement will be added through contact laws, a fault gouge simply 

composed of polygonal matrix particles and a mixture between angular grains surrounded by 

matrices. The last section presented the 2D direct shear model simulated using DEM and the 

important parameters of the model. It also highlighted several preliminary analyses defining the 

physical and geometric parameters of numerical fault gouges (applied normal stress of 40 𝑀𝑃𝑎 

and a shearing velocity of 1  /𝑠). It has been confirmed that the shape of the grains has a 

significant influence on the coefficient of friction and the shear behavior of the gouge, justifying 

the use of angular grains with facets.  

However, there are some limitations to these numerical models, such as: 

− The small wavelength used for rock walls, as opposed to a mature fault which may be 

very eroded with higher rock walls wavelength. 

− The choice of constant normal stress, shearing velocity, and gouge thickness implies 

results corresponding to a specific case of study. 

− The impossibility of a direct study of seismic or aseismic behavior, since the model 

cannot store energy. 

The following chapters propose two different models of a sheared granular fault gouge with 

cemented material (Chapter 3) or matrix material (Chapter 4) with the associated contact 

algorithms detailed above. Both granular samples try to be as realistic as possible with angular 
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Chapter 3. Slip behavior of a 

sheared cemented gouge  

3.1. Foreword 

Within a mature fault gouge, mineral cementation coming from rock dissolution, melting, or 

other processes derived from previous slips, can fill remaining pore spaces between particles 

and change the global state of cohesion (Philit et al., 2018). The objective of this chapter is to 

establish a link between the micro-mechanical and structural properties of a cemented gouge 

layer, and its rheological behavior under shearing, Figure 43. We also aim to understand the 

influence of interparticle bonds on slip mechanisms by employing the Discrete Element Method 

(Chapter 2). We consider a direct shear model without fluid in 2D, based on a granular sample 

with angular and faceted shapes. Section 3.2 presents the fault segment model in 2D involving 

two rough surfaces representing the rock walls separated by the cemented fault gouge. Section 

3.3 describes and characterizes the cemented materials used for the numerical campaign. 

Focusing on the physics of contacts inside the granular medium, we explore strength evolution, 

gouge kinematics, and force chains within the gouge in section 3.4. We aim in this section to 

study the effect of cementation and initial porosity on mechanical behaviors and kinematics of 

shear bands. The last section 3.5 offers a discussion on new insights and relations between 

cementation within the gouge, shear localization, and relevance of Mohr-Coulomb theory for 

fault models. 

 
Figure 43. Main schema of Chapter 3. 

This chapter is mostly based on the following paper: 

Casas, N., Mollon, G., & Daouadji, A. (2022). DEM Analyses of Cemented Granular Fault Gouges 

at the Onset of Seismic Sliding: Peak Strength, Development of Shear Zones and Kinematics. Pure 

and Applied Geophysics. https://doi.org/10.1007/s00024-021-02934-5g 
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3.2. Numerical framework and sample generation 

3.2.1. Granular fault gouge sample 

Numerical fault gouge 

The software Packing2D (Chapter 2) is employed to create a realistic granular sample with 

angular and faceted shapes of particles. Since the morphological descriptors of the grains of 

granular gouges may vary significantly between faults, the spectrum was calibrated by visual 

comparison with published pictures of real gouge    d re           e “Grains with angular 

    e” o  Chapter 2,  Figure 44 (a). 

 

Figure 44. (a) Zoom on a granular sample generated with packing2D, with angular and faceted shapes, and 

compacted in MELODY2D (b) Particle size distribution of the synthetic sample, fractal dimension with 𝐷 = 2.65. 

A 2mm-thick granular fault gouge is created before compaction, resulting in 1.7    after 

compaction. A gouge of 2 x 20   ² is found to be satisfactory (RSE, Chapter 2) and falls 

within the same order of magnitude as previous studies [(Ferdowsi, 2014) & (Dorostkar et al., 

2017b)]. A fractal size distribution is chosen to fit with the literature on granular gouge 

composition, [(Olgaard & Brace, 1983), (Blenkinsop, 1991), (Billi & Storti, 2004), (Billi, 

2005), (Muto et al., 2015)] with a fractal dimension factor D close to 2.6. The gouge with 

angular grains is composed of 4960 particles with a corresponding equivalent diameter in the 

range of 28 – 226 µ     er  e     e o     μ     d     50) equal to 70 𝜇 , Figure 44 (b). 

Two initial states 

Once the granular sample is generated with Packing 2D, it is then inserted between two rock 

walls and the first simulation step consists in compacting the sample with 𝜎𝑁 = 40 𝑀𝑃𝑎 to 

create a stabilized packing of granular material (Chapter 2). Thanks to a preliminary study on 

the influence of interparticle friction during compaction and shearing steps (Appendix 2.C), we 

chose to keep two initial porosities for this chapter, 𝑃𝑝𝑜𝑟𝑒 = 16 % (i.e. 𝐹𝑆 = 0.84) and 𝑃𝑝𝑜𝑟𝑒 =

11 % (i.e. 𝐹𝑆 = 0.89)       re re  e    e       ed “  d-de  e      e ”   d “de  e      e ”. 

When the granular media obtained is sheared (without cementation), the initial density has a 

considerable influence on the initial peak of effective friction and dilation phase with slip 

distance: the chosen samples correspond to two granular behaviors when the gouge is sheared 

without cementation, as observed in Figure 45.  
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The mid-dense sample (𝐹𝑆 = 0.89) shows a higher friction resistance than the mid-dense 

sample (𝐹𝑆 = 0.84) that does not exhibit the same friction with a friction peak almost missing. 

The evolution of the gouge thickness Figure 45 (a) is also consistent with the initial density of 

both samples: the denser sample presents higher dilation. 

 
Figure 45. (a) Gouge thickness (m) as a function of the slip of the upper rock wall (m)  - for dense and mid dense 

sample (b) Effective friction as a function of of the slip of the upper rock wall (m), results from the shearing of 

granular samples with the following parameters (𝜎𝑛 = 40 𝑀𝑃𝑎, 𝑉 = 1 𝑠⁄ , 𝜌𝑟 = 2600 Kg  3⁄ , 𝑘 =
101   . −3, 𝜇𝑛 𝑚 = 0.5 (during shearing)). 

If we want to study the onset of sliding, it is important to know what is the initial state of 

the system, and more particularly the initial porosity of the granular material. Depending 

on the type of rock or the previous shearing in the gouge, the sample can have different 

initial states that will resist differently to shearing. Within the next sections, we will 

consider the two identified initial porosities, (𝑃𝑝𝑜𝑟𝑒 = 16 %) for mid-dense samples and, 

(𝑃𝑝𝑜𝑟𝑒 = 11 %) for dense samples. 

3.2.2. Numerical setup for direct shear simulations 

Introduction of cementation between particles 

     e  e e    re e     r   er “ o e   e” behavior [(Riedmüller et al., 2001), (Wibberley et 

al., 2008)], it can be explicitly simulated in DEM by considering breakable cohesive bonds 

 e wee    r    e     e “ o ded  o r- o  o  ”   w  d   ed  o   e  o   e   r        e      

therefore, applied considering a pressure 𝐶𝑛 𝑚 to maintain the contact between particles 

(Chapter 2). 
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The numerical cohesion 𝐶𝑛 𝑚 considered in the code cannot be directly related to real 

cementation in rocks and does not bear much physical signification by itself. A good way to 

associate a quantitative description to this numerical parameter is to define an associated level 

of cementation. In the initial state of our model, each cohesive bond between any pair of 

contacting grains requires a certain amount of mechanical energy for breaking. The energy of 

de-cementation 𝐸𝐶𝑒𝑚, represents the total energy needed by the system to break all cohesive 

bonds initially present within the gouge. It can be described by a relation between properties of 

the initial contact network (i.e. at the end of the compacted state):  

𝐸𝐶𝑒𝑚 = (∑(∑𝐿𝑝−𝑐𝑖𝑗

𝑛

𝑗=1

)

𝑁

𝑖=1

)(
𝐶𝑛 𝑚

2
)
2 1

2 𝑘𝑛 
𝐿𝑔 

 

   [𝐽. −2] (3.1) 

With 𝐿𝑝−𝑐𝑖𝑗 the contact length of one particle bond in one side of a particle, Figure 46 (a), N 

the total number of particles, 𝑛 the number of contact bonds for each particle, 𝑘𝑛 the normal 

numerical stiffness, 𝐶𝑛 𝑚 the initial numerical cohesion and 𝐿𝑔 the length of the model. 

The idea is then to be able to relate this energy to the physical characteristics of rocks. To do 

so, the total amount of energy that would be needed in order to break all the initial bonds 

between cemented particles is normalized with respect to a representative surface energy 𝐸𝑆. 

This energy is applied to the contour of each particle which is assumed to be cemented on its 

entire contour, (a unit length is considered in the third dimension for any necessary purpose). 

The maximal energy for a fault patch of 1  ² width (third direction) and cemented bonds 

covering the total external surface of all particles in the gouge, as in Figure 46 (b), could be 

written as: 

𝐸𝑚𝑎𝑥  = 2 𝐸𝑆

∑ 𝑃𝑗
𝑁
𝑗=1

𝐿𝑔
  [𝐽. −2] (3.2) 

With 𝑃𝑗  the  er  e er o      r    e “j”   d  𝐸𝑆 the surface energy of 62  𝐽/ ² which was 

reported for the Chilhowee quartzite and considered as an upper limit for rock surface energy 

by (Friedman et al., 1972). 

 

Figure 46       e    o       e wee        r   r    e     e  e  r    r          r    ‘j’  w         o     er  e er 𝑃𝑗 and 

total contact length of one grain  𝐿𝑝−𝑐𝑗 (different from the total contact length of the sample 𝐿𝑝−𝑐) (b) Theoretical 

view of a contact fully cemented (100 % cementation) where 𝐿𝑝−𝑐𝑗 is equal to the perimeter of the grain. 

𝑃𝑗

𝐿𝑝−𝑐 
 

(a)

𝐿𝑝−𝑐 
= 𝑃𝑗  

Cement
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The next step is to determine which numerical cohesion corresponds to this state of total 

cementation Figure 46 (b), this value is called 𝐶𝑛 𝑚−100%. We can thus express the de-

cementation energy in our initial sample as a percentage of cementation 𝑃𝑐𝑒𝑚 proportionally to 

the 100 % cemented material. 

𝐸𝐶𝑒𝑚 = 𝐸𝑚𝑎𝑥  [𝐽. 
−2] (3.3) 

𝐶𝑛 𝑚−100% =  √
16 𝐸𝑆( ∑ 𝑃𝑗

𝑁
𝑗=1 ) 𝑘

(∑ (∑ 𝐿𝑝−𝑐𝑖𝑗
𝑛
𝑖=1 )𝑁

𝑗=1 )
   [𝑀𝑃𝑎] (3.4) 

𝑃𝑐𝑒𝑚 = 100 (
𝐶𝑛 𝑚

𝐶𝑛 𝑚−100%
)  [%] (3.5) 

Hence, any initial state of cementation effectively introduced in the numerical samples by 

the means of the numerical cohesion 𝐶𝑛 𝑚 can be defined as a certain percentage of this 

complete cementation. Thus, a simulation case with cementation of 𝑃𝑐𝑒𝑚 = 20 % is to be 

interpreted in the sense that, in its initial state, the energy needed to break all its bonds is 

equal to 20 % of that of the fully cemented case. After compaction and stabilization, the 

contact law between grains is introduced with a percentage of cementation 𝑃𝑐𝑒𝑚 from 0 % 

to 95 %. 

Direct shear simulations 

Figure 47 presents the DEM model of the cemented granular fault gouge, with rock walls at the 

top and bottom sides of the granular sample.  

Contact surfaces of rock walls are sinusoidal to introduce a certain roughness and avoid wall-

slip effects since we want to ensure that slip accommodation takes place within the gouge. This 

is a pure modeling choice, and the rock surfaces should be considered as nominally flat. 

Interparticle friction is equal to 1 at the contact interface between walls and particles to make 

sure that the motion is fully coupled at the wall-grains transition. Interparticle friction 𝜇𝑛 𝑚 is 

set to 0.5 between particles in contact. Since the parametric study realized in Chapter 2, a normal 

stress of 40 𝑀𝑃𝑎 and a sliding velocity of 1  /𝑠 are applied on the upper rock wall.  

To limit interpenetration between grains while mimicking the local deformation of the grains 

in the contact vicinity, a constant numerical stiffness of 101  𝑃𝑎/  is used (Appendix 3.A). 

This constant value was chosen to obtain the overall deformability of the sample of the same 

order of magnitude as the one for bulk granite or shearing modulus (≈ 10 − 25 𝑀𝑃𝑎 depending 

on initial porosity, see next section). All the parameters are gathered in Table 3 and are 

reproducible (Appendix 3.B). 
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Figure 47. DEM model of a granular fault gouge, 4960 angular particles in a 1.7x20    domain. As explained in 

Chapter 2, gravity is ignored in the model, assuming that the fault can be oriented in a wide range of directions, 

and that gravity forces are negligible compared to those related to normal and deviatoric stresses applied on the 

gouge. Periodic boundary conditions are present on both right- and left-hand sides of the sample to maintain the 

continuity of the movement at large slips. The movement of the upper rock wall in the 𝑦-direction remains free to 

allow gouge dilatancy while the bottom rock wall is fixed. In this study, the chosen density of 2600 𝑘𝑔/ 3 for 

particles, leads to an appropriate time step for these simulations of 10−  s. 

Table 3. Numerical setup and properties for the experimental campaign. 

Property Associated variable Value 

Normal stress 𝜎𝑁 40 𝑀𝑃𝑎 

Shear velocity V 1  /𝑠 

Rock density 𝜌𝑟 2600 𝑘𝑔/ 3 

Contact stiffness 𝑘𝑛& 𝑘𝑡 101  𝑃𝑎/  

Cohesive bond strength 𝐶𝑛 𝑚 0   2500 𝑀𝑃𝑎 

Percentage of cementation 𝑃𝑐𝑒𝑚 0 %   100 % 

Percentage of initial porosity 𝑃𝑝𝑜𝑟𝑒 11 % & 16 % 

Interparticle friction 𝜇𝑛 𝑚 
0.5 (grains – grains)  

1 (grains – walls) 

Initial sample size thi x 𝐿𝑔 1.7 x 20    

Particle equivalent diameter  𝑚𝑖𝑛 –  𝑚𝑎𝑥 28 –  226 𝜇  

Number of particles    4960 

DEM time step Δ𝑡 10−  s 

Proximity updating period Δ𝑡−𝑐𝑜𝑛𝑡𝑎𝑐𝑡 10−7 s 

3.3. Cemented material characterization 

3.3.1. Characterization under biaxial simulations 

The strength of granular materials (may they be cemented or not) and rocks is generally 

considered to follow the Mohr-Coulomb criterion (Chapter 1). In this model, the effective 

stresses are equal to the total stresses as the material is dry. 

To characterize our synthetic cemented gouges (in the sense of Mohr-Coulomb), we ran 

independent biaxial simulations of samples with the same characteristics as those used for our 

sheared fault gouge (in terms of grain shapes, size distributions, initial solid fraction, 
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interparticle cementation, and interparticle friction). Rectangular granular samples (4 mm wide 

and 10 mm high) are placed between four rigid walls, Figure 48 (a). The lower wall is fixed in 

displacement, the upper wall is submitted to a constant downwards velocity 𝑉𝑦, and the lateral 

walls are submitted to a confining pressure 𝜎3, fixed in vertical and rotational motions, and free 

to move horizontally.  

For each cementation level and each initial porosity, three tests are performed with confining 

stresses of 10 𝑀𝑃𝑎, 40 𝑀𝑃𝑎, and 80 𝑀𝑃𝑎. The vertical stress 𝜎1 is monitored during vertical 

compression (series of pictures with relative damage, Figure 48 (a)). Biaxial simulations are 

only used for the cemented material characterization in this section in order to obtain the internal 

friction angle 𝜑 and the cohesion 𝐶.  These parameters are not to be confused with the 

interparticle cohesion (𝐶𝑛 𝑚) and friction (𝜇𝑛 𝑚) that are introduced in the DEM contact laws, 

since they represent a collective response of the granular material to shearing. 

 

Figure 48. Illustrative results for a numerical cohesion 𝐶𝑛 𝑚 = 1000 𝑀𝑃𝑎 (a) Views of experiment and damage 

evolution for different percentage of vertical shortening under confining stress of 80 𝑀𝑃𝑎 - (b) Major principal 

stress as a function of vertical shortening and associated Mohr circles, for three confining stresses (10 𝑀𝑃𝑎, 

40 𝑀𝑃𝑎, and 80 𝑀𝑃𝑎) for both dense and mid-dense samples. 

Figure 48 (b) and (c) provide illustrative results for a numerical cohesion 𝐶𝑛 𝑚 = 1000 𝑀𝑃𝑎 

(corresponding to 𝑃𝑐𝑒𝑚 = 38 % in the dense case and 𝑃𝑐𝑒𝑚 = 40 % in the mid-dense case). 

Graphs show that dense samples quickly reach a peak strength before softening towards a 

plateau value, while mid-dense samples are less stiff and reach the same plateau (approximately 
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at the same level of vertical strain) without passing by a well-defined peak. When plotting the 

Mohr circles corresponding to the maximum values of 𝜎1, Figure 48 (b), we confirm that all 

samples follow the Mohr-Coulomb failure criterion, which makes it possible to characterize 

their cohesion 𝐶 and internal friction angle 𝜑. For each initial state, elasticity moduli 𝐸 (not 

  r      e      o  o   ’   od     e    e o           o d   o     re    o e  r   ed    ed o    e 

vertical stiffness of the samples at low (<<1 %) vertical strains. 

Similar Mohr-Coulomb graphs were plotted for the other 𝐶𝑛 𝑚 values and also result in 

following the Mohr-Coulomb criterion. The main results are gathered in Figure 49:  

(a) internal friction angle 𝜑 is only moderately influenced by the cementation level in the mid-

dense samples and is a non-monotonous function of the cementation in the case of dense 

samples. It is also strongly linked to initial density: mid-dense samples have friction angle 

values of 32 − 35°, while dense samples have friction angle values up to 36 − 44°.  

(b) Cohesion increases monotonously with cementation (as found in the literature by (Wissa, 

1965) and (Lade & Overton, 1989)) and reaches much larger values for dense samples (up to 

70 𝑀𝑃𝑎 for 𝑃𝑐𝑒𝑚 ≈ 100 %) than for mid-dense samples (up to 20 𝑀𝑃𝑎). It can also be noted 

that a certain percentage of cementation is needed to have a measurable cohesion within the 

gouge (𝑃𝑐𝑒𝑚 > 20 % for mid-dense samples and 𝑃𝑐𝑒𝑚 > 10 % for dense samples).  

(c) However, Elasticity moduli is rather unaffected by cementation and is close to 11 − 12 𝐺𝑃𝑎 

for mid-dense samples and to 25 − 26 𝐺𝑃𝑎 for dense samples. 

 

Figure 49. (a) Internal friction angle (°), (b) Cohesion (MPa), and (c) Elasticity moduli (GPa) as a function of the 

Cementation (%) for dense and mid-dense samples. 

3.3.2. Comparison to real cemented material and rocks 

The cementation considered in this chapter has a clear definition from a numerical point of view 

(3.2.2) but is difficult to characterize on real samples. For this reason, it is instructive to consider 

instead the Mohr-Coulomb properties of the cemented gouges, for which characterization 

(a) (b) (c)

Dense
Mid-Dense

E
la

st
ic

it
y
 M

o
d
u
lu

s 
(G

P
a)

C
o
h
es

io
n
 (

M
P

a)

In
te

rn
al

 f
ri

ct
io

n
 a

n
g
le

 (
°)

Cementation (%) Cementation (%) Cementation (%)

0 50 100 0 50 100 0 50 100
0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

0

5

10

15

20

25

30

35

40

45



 

 

79 Chapter 3. Slip behavior of a sheared cemented gouge 

techniques are available. Figure 50 compares the different synthetic materials tested in this 

chapter (with different initial percentages of cementation and porosities) with typical rock 

properties found in the literature (Schellart, 2000), in terms of internal friction angle and 

cohesion.  

We observe that our samples have adequate values of internal friction angle (especially in the 

mid-dense case) and are in the lower range of cohesions. The low cohesion is consistent with 

the fact that we are simulating cemented gouges instead of intact rock. Figure 50 confirms that 

our samples have similar Mohr-Coulomb properties to some real rocks: (a) dense poorly 

cemented samples present similar Mohr-Coulomb properties to Quartz sand, (b) the dense 

gouge with 𝑃𝑐𝑒𝑚 = 75 %  ook    ke ro k “ ”   e  e  ee    d  o e               e e  ed  o  e 

(mid-de  e            r  ro er  e   o ro k “ ”   r    e    

Even though some friction angle and cohesion are close to some Mohr-Coulomb values, a fault 

gouge develops a complex Riedel band structure reflecting a heterogeneous stress field different 

from the one observed for intact rocks (Lockner & Beeler, 2002). Future work might be 

undertaken to target the Mohr-Coulomb properties of a cohesive rock for which direct shear 

experimental results are available, in order to propose a direct comparison with our simulations.  

 
Figure 50. Internal friction angle as a function of Mohr-Coulomb cohesion for the simulated materials, as 

characterized by numerical biaxial tests (Figure 48). Dense samples are marked by squares and mid-dense samples 

by diamonds. It can be noted that the samples used are large enough to avoid any size effect or any thickness 

dependence. The discs correspond to experimental characterizations of different rocks referenced in (Schellart, 

2000) listed in the table next to the graph. 

3.4. Influence of the cementation on gouge kinematics 

Simulations with various cementation levels are performed for both dense and mid-dense 

samples with the numerical setup for a direct-shear experiment (section 3.2.2). In the next 

sections, we will use the effective friction 𝜇∗ and the dilation 휀𝑦 (Chapter 2) to analyze the 

mechanical behavior of gouges. It is important to keep in mind that cementation makes 𝜇∗ 
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dependant on the normal load and thus different from a stress-independent Coulomb-like 

 r    o   oe     e     e  e   e  er  “e  e    e  r    o ”  Dataset from direct shear simulation is 

available in (Appendix 3.C). 

3.4.1. Effective friction and dilation within dense samples 

Friction and gouge strength 

Figure 51 (a) & (b) provides typical curves of the measured effective friction of the fault as a 

function of the horizontal displacement imposed to the upper wall. In all cases, the tangential 

force increases linearly with cementation until a maximum effective friction 𝜇𝑝
∗ , demonstrating 

the maximal effort that the loading system must provide to overcome interlocking in the gouge 

and accommodate imposed shearing. The linear elastic part of the curves represents the stiffness 

of the granular material. It should be noted that this stiffness is only related to the gouge layer 

itself since no other compliance (related to the surrounding medium, for example) is considered 

in the simulations (Chapter 2). All simulations with initial dense samples follow the same elastic 

slope, and adding more cementation extends the elastic part before effective friction peak, 

Figure 51 (a).  

The peak strength evolves from a smooth, delayed, and of moderate amplitude shape (poorly 

cemented cases) to a sharp, short, and intense shape (highly-cemented cases). After the peak, 

the effective friction decreases in all cases towards a plateau and does not evolve significantly 

anymore until the end of the simulation. All steady-state values oscillate around the same 

effective friction  𝜇𝑆𝑆
∗ , (averaged from the beginning of the plateau until the end of the 

simulation), close to 0.5 (ranging from 0.45 to 0.51). This value is in agreement with other 

numerical studies (Rathbun et al., 2013), but lower than typical 3D experimental values (which 

are usually above 0.6). This discrepancy is related to the 2D character of the simulations (Frye 

& Marone, 2003). More details on that subject can be found in Chapter 1. 

Brittleness 

According to the literature, shear strength is enhanced with cohesion, (Wissa, 1965), and thus 

with the increase of cementation, Figure 49 (b). Cohesive strength in granular materials is 

known to correlate with an increase in the brittleness (Meng et al., 2021), of the material (Das 

et al., 2014), and this is confirmed by Figure 51 (c), which presents the evolution of brittleness 

within each sample (based on strength ratio (Bishop, 1971)).  

Despite the cementation level of each simulation, all the dense samples exhibit an 

overconsolidation peak. A reduction of this peak may appear for higher applied normal stress 

as found by (Haines et al., 2013). A qualitative change in behavior is observed close to 𝑃𝑐𝑒𝑚 =

10 %. This transition corresponds to the value where cementation starts to induce cohesion 

within the gouge (red line). From this moment a marked evolution in terms of peak strength is 

observed, with the emergence of a sharp peak strength increasing with cementation.  
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Figure 51. (a) Effective friction curve for different surface percentages of cementation for dense samples as a 

function of the slip distance (μm), (b) Zoom in on the peak,  (c) Brittleness as a function of cementation, the 

brittleness is expressed as the ratio of (𝜇𝑝
∗ − 𝜇𝑠𝑠

∗ ) divided by 𝜇𝑝
∗ ,  (d) Dilation variation 휀𝑦 as a function of the slip 

distance (μm) for dense samples – (e) Zoom out on the dilation curve, higher slip distance.  

Letters correspond to different steps in curves presented: [A] is the initial state before shearing and is identical in 

all cases. [B] is the peak location, [C] is the end of the first peak (only appears for dense samples with a lot of 

cementation), [D] is half-peak, [E] is the end of the major dilation phase, [F] is the observed end of the effective 

friction peak, [G] is a common state for beginning of steady-state and [H] is the end of simulation with 𝐷𝑠 =
2500 µ   re          e        or        or    o         e    e “   e e     o ”     o  re re e  ed  ere          

similar to the case with 4 % cementation in terms of friction and dilation variation. These results are not in the 

range of small deformations, as the total slip displacement (𝐻 = 2.5   ) is higher than the gouge thickness (≈
1.75   ). 
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Dilation 

For 𝑃𝑐𝑒𝑚 ≤ 10 %, dilation is similar to a case without cementation as the cohesion in the sense 

of Mohr-Coulomb is smaller than 1 𝑀𝑃𝑎 (i.e. negligible compared to the normal stress). A 

progressive dilation until the steady-    e “ ”    o  er ed    e    re  e o   e e  ation (for 

𝑃𝑐𝑒𝑚 ≥ 10 %) seems to accelerate the dilation of the gouge, Figure 51 (d), which appears earlier 

with slip distance. This dilation enhancement is possible because some frictional contacts begin 

to form with the breakage of cemented bonds. Observing the second part of simulations from 

“ ”  o “ ”  Figure 51 (e), three main trends are highlighted: materials with medium 

cementation (~10 % ≤ 𝑃𝑐𝑒𝑚 ≤ 75 %) reach a stabilized dilated material whereas poorly 

cemented materials continue to dilate and highly cemented materials present a contractive 

behavior. The higher dilation observed for poorly cemented materials (𝑃𝑐𝑒𝑚 ≤ 10 %) can be 

explained by the fact that these simulations present more frictional contacts than cohesive 

contacts, and that frictional particles are known to enhance dilation (Roy & Luding, 2017). For 

extremely high cementation (𝑃𝑐𝑒𝑚 ≥ 75 %), although the steady-state friction value announces 

   r    o         z   o     “ ”     o  r        e    or       er o  er ed   ro  “ ”  o “ ”        

contraction is attributed to the rupture of the asperities formed by cohesive links (i.e. 

agglomerates) at   e  e        o    e   e r  o    z   o  “ ”   ee  e   o  3.4.4. 

3.4.2. Interface failure modes within dense samples 

Cohesive strength correlating with brittleness increase has a major influence on strain 

localization (Maurer, 1965). From observations on friction and dilation, the simulated materials 

can be gathered in three different cementation regimes: poorly cemented (𝑃𝑐𝑒𝑚 ≤ 10 %), 

cemented (10 % ≤ 𝑃𝑐𝑒𝑚 ≤ 75 %), and highly-cemented (𝑃𝑐𝑒𝑚 ≥ 75 %), corresponding to 

three modes of deformation zone. 

The rupture of a cohesive bond is represented by the increase of damage to the concerned grains. 

This damage is set to 0 for each grain when cohesive bonds are first established (all the bonds 

 re           d     e o  e                  e e  o d  re      e “ roke ”         Chapter 2). It is 

thus a relative damage with respect to the initial state. The representation of the relative damage 

gives a picture of the state of cementation between grains and their location within the gouge, 

Figure 52, Figure 53 & Figure 54. As shear band formation and evolution vary with the level of 

bond strength (Jiang et al., 2013), the damage allows following the formation of failure patterns 

(Riedel cracks, shear bands, etc.) and their orientation. 

(i) For poorly-cemented materials (𝑃𝑐𝑒𝑚 ≤ 10 %), the interparticle cementation introduced 

between grains is not sufficient to maintain cohesive bonds during shearing. The 

simulation for 𝑃𝑐𝑒𝑚 = 4 %, Figure 52, reveals very few tensile forces consistent with 

the low percentage of cementation within the sample. As soon as the upper rock wall is 

set into motion, almost all cohesive bonds break and only a few of them resist until 

 r    o   e k “ 4”        o      o  d  o      e  e   e r    d    d   r     o    z   o  

(Mead, 1925), and the limited dilation in the first stages of shearing is consistent with 

the absence of shear band formation. 
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Figure 52. Relative damage snapshot for 𝑃𝑐𝑒𝑚 = 4 % in the dense sample (entire granular gouge). Letters 

correspond to different steps in the curves presented in Figure 51  “  ”   o d    e   d  o-     d      e  “  ”  

maximum damage and slip distance of 1mm). (i) Tensile contact force orientations allow getting a grasp on the 

way load is transferred through a granular sample. This information is coded in a polar diagram which provides 

the distribution of the orientation of tensile contacts. 

(ii) The second type of material, Figure 53, corresponds to a cemented granular material 

(𝑃𝑐𝑒𝑚 = 38 %). In contrast with the first case, this material presents clear augmentation 

o   e    e  or e   or  o               e  “ 38”    d rk    e   d           e     red    Figure 

53       e    e  o         e  red  e  ro  e  e    e  r    o   e k “ 38”  o   e e d o    e 

 e k “ 38” w      e  re k  e o   o e   e  o d    owe er many of the cohesive bonds 

re                  e       o  e  e    or   r    o   e k “ 38”      e    r      o    o    

movement within the gouge, highlighting a preferential localization of cohesive bonds 

rupture (white arrow in Figure 53 is considered as the first Riedel deformation 

(Tchalenko, 1970)        r    re de e o        e  e       e  o    e         o  “ 38 to 

H38” w          er        r  o     ede    nd   (oriented in the sheared direction, ∼12° 

from the upper wall). The progression of the Riedel band towards a shear band increases 

until the end of the effective friction peak, where it is no longer detectable among the 

damage zone. The different Riedel geometries are associated with different shear 

deformation degrees. Conjugate Riedel bands   are not visible in the numerical results, 

but tensile fractures T are observed. This is in line with findings reported in (Cho et al., 

2008), who highlighted that tensile fracturing is very important in the development of a 

shear zone, particularly at low normal stress.  

 ro   r    o   e k “ 38”  d    e e o    o     o              e  re e  e o   o e   e 

agglomerates formed by intact bonds within the gouge (ex: Ag1), with size decreasing 

with time. In contrast with poorly cemented material where contacts take place between 

two particles, contacts occur here between clusters of cohesive grains. 
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Figure 53. Relative damage snapshot for 𝑃𝑐𝑒𝑚 = 38 %  in the dense sample (entire granular gouge). Letters 

correspond to different steps in the curves presented in Figure 51   “   ”   o d    e   d  o       “   ”       

distance of 2.5      “   ” de o e      r e     o er  e  o  owed during its motion. The white arrow follows the 

 ow     e   ede    e r “  ”     de   e  o  e   d “ ”       e     e o  e  e   o   or  e    e   r    re       e    e 

contact forces orientation allows getting a grasp on the way load is transferred through a granular sample. This 

information is coded in a polar diagram which provides the distribution of the orientation of tensile contacts. 

These clusters can lead to rather inhomogeneous behaviors inside the granular gouge, 

changing the whole geometry and particle size distribution. Similar observations were 

made by [(Cho et al., 2008) & (Rognon et al., 2008)]. Cohesive agglomerates also 

participate in increasing the overall dilation before steady-state, Figure 51 (b), as also 

found by (Lade & Overton, 1989) for large cemented particles at low confining 

pressures. Even though dilation is needed to observe shear bands, this cemented material 

(presenting the highest dilation after peak strength) inhibits the persistence of shear 

bands until the end of the shearing. This may be due to the important breakage of 

cohesive links into frictional contacts after the end of the effective friction peak. 

(iii) Increasing again 𝑃𝑐𝑒𝑚 leads to a highly-cemented material (𝑃𝑐𝑒𝑚 = 95 %) where most 

cohesive bonds stay intact during the entire simulation, Figure 54. The numbers of 

tensile forces are obviously higher than in previous materials, Figure 54 (i), and 

correspond to (Lade & Overton, 1989) results.  
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Figure 54. Relative damage snapshot for 𝑃𝑐𝑒𝑚 = 95 %  in the dense sample (entire granular gouge). Letters 

correspond to different steps in the curves presented in Figure 51   “   ”   o d    e   d  o      d      e  “   ”  

slip distance of 2.5   ). R represents the Riedel shear bands and Y the horizontal shear localization. (i) Tensile 

contact force orientations allow getting a grasp on the way load is transferred through a granular sample. This 

information is coded in a polar diagram which provides the distribution of the orientation of tensile contacts. 

This highly cemented rock enhances the formation of two Riedel cracks R at the second 

 r    o   e k    “ 95”    e   “ 95”   ow    e   r e     ede      k e              e     o 

corresponds to the maximum dilation peak in the simulation. In the next steps, from 

“ 95”  o “ 95”    ede     d      k e    ro re    e   red  e        or o     or zo     

shear localization Y      e  o  o    e  r     r  o  e    “ 95”         e r     k e   

reduction was also observed in other numerical studies with the increase of strain inside 

the model (Cundall, 1989). As previously supposed (Section 3.4.1), the progressive 

breakage of cohesive agglomerates (i.e. asperities) at the interface between gouge and 

rock boundary seems to explain the contractive response observed in Figure 51 (e), from 

“ 95”  o “ 95”    e shearing localizes on the bottom or top part of the gouge (depending 
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on the simulation) and lets the majority of particles (still cemented) behave as a single 

solid-  ke  od          e r    or “     e” zo e    re  e  w         d      e  

3.4.3. Influence of initial porosity with cementation 

The same percentages of cementation have been tested on a second set of samples with a higher 

initial porosity 𝑃𝑝𝑜𝑟𝑒 = 16 % (termed as mid-dense in what follows, as opposed to the dense 

samples with 𝑃𝑝𝑜𝑟𝑒 = 11 %). The three types of cemented materials previously highlighted have 

been kept to compare the results between dense and mid-dense samples. The trend observed for 

mid-dense samples is similar to dense samples, but we note an influence of both initial porosity 

and cementation on the strength of cemented materials.  

Friction & dilation 

The increase of initial porosity is supposed to reduce the fracture strength (Taylor, 1948). Our 

results present the same conclusion, but different shapes of effective friction peak are observed: 

the peak strength may be sharp, short, and intense (dense and highly cemented cases) or smooth, 

delayed and of moderate amplitude (mid-dense and moderately cemented cases), Figure 55 (a) 

& (b). Denser samples show higher dilation rates than mid-dense samples Figure 55 (d), as the 

initial gouge is initially more compacted (Wood, 1990). When the steady-state is reached, a 

maximum dilatancy is also observed for denser initial samples with twice the deformation 

obtained with mid-dense samples, for all initial cementations (휀𝑦 = 8 % for dense samples vs 

휀𝑦 = 4 % for mid-dense). 

Brittleness 

Figure 55 (c) gathers the brittleness as a function of cementation for the whole simulation 

campaign and gives more precise information on the transition zone. For samples where a 

measurable Coulomb cohesion exists, an increase of cementation increases the brittleness for 

both dense and mid-dense samples, and thus enhances the strength of the gouge, Figure 55 (a). 

However, the increase of initial porosity leads to a weaker material in terms of cohesive 

strength.  

Without the effect of cementation, we can observe that the brittleness is almost four times higher 

for dense samples (i.e. ~ 0.4) than for mid-dense samples (i.e. ~ 0.1), meaning a smaller 

overconsolidation peak. The mid-dense material with the lower cementation is assumed to be 

here, the weaker material tested. When the cementation level reaches values close to its 

maximum (𝑃𝑐𝑒𝑚 ≈ 100 %), the brittleness can reach almost 0.9 in the dense material and almost 

0.66 in the mid-dense material. Such high values are likely related to the fact that the 

cementation of the sample is very high while the confining stress (40 𝑀𝑃𝑎) is rather low (Lade 

& Overton, 1989). 
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Figure 55. (a) Effective friction curve, comparison between dense and mid-dense samples as a function of the slip 

distance (μm) for the three different cemented materials highlighted. (b) Zoom in on the peak for mid-dense 

samples. (c) Brittleness as a function of cementation for both porosity states, the brittleness is expressed as the 

ratio of (𝜇𝑝
∗ − 𝜇𝑠𝑠

∗ ) divided by 𝜇𝑝
∗  .(d) Dilation variation as a function of the slip distance (μm) for dense and mid-

dense samples. Letters correspond to different steps in curves presented: [A] is the initial state before shearing and 

is identical in all cases. [B] is the peak location, [C] is the end of the first peak (only appears for dense samples 

with a lot of cementation), [D] is half-peak, [E] is the end of the major dilation phase, [F] is the observed end of 

the effective friction peak, [G] is a common state for beginning of steady-state and [H] is the end of the simulation. 

Failure patterns 

Mid-dense samples also present higher relative damage with easier grains reorganizations, 

Figure 56, which agrees with the relatively low Coulomb cohesion involved. One high angle 

Riedel shear band  ’ in the 40 % case, and two high angle Riedel bands  ’ in the 95 %, are 

followed by a horizontal shear localization   at the bottom of the granular gouge. Conjugate 

Riedel bands observed do not have the same orientation as those observed with dense materials 

and are less persistent during shearing. The more ductile character observed for mid-dense 

samples could be a reason for the different Riedel angles observed (Misra et al., 2009). 

Moreover, the non-persistence of shear bands for mid-dense samples is in adequation with 

previous studies on sandstones [(Dunn et al., 1973), (Antonellini & Pollard, 1995)]. They have 
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shown that gouges with high porosities enhance a distributed deformation that takes the form 

of cataclastic flow, in contrast with low porosity sandstones which better fail by localization 

and strain softening (Hirth & Tullis, 1989). 

 
Figure 56. (a) Relative damage snapshots for mid-dense sample (entire granular gouge). For both peak [B] and 

end [F] of effective friction peak. Letters correspond to different steps in the curves presented in Figure 7. R2 

represents high angle Riedel shear bands and Y the horizontal shear localization. Evolution of ductility with 

cementation and porosity. (b) Tensile contact forces orientation allows to get a grasp on the way load is transferred 

through a granular sample. This information is coded in a polar diagram which provides the distribution of the 

orientation of tensile contacts. 

3.4.4. Influence of ductility with cementation and porosity 

Force chains are key elements to understand the kinematics of the gouge layer and illustrate 

changes in ductility behavior inside the granular gouge as a function of cementation or porosity. 

     o  d  e  o ed            e  re e    o  e    “d        ”     o  e   der  ood      e  e  e o  

granular mechanics: it is related to the suddenness or slowness of the post-peak frictional 

weakening but does not involve any visco-plastic phenomenon.  
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Evolution of ductility with cementation 

Force chains are plotted between grains centers (for each contact) in Figure 57. They are 

commonly used in granular physics for load transfer observation [(Radjai et al., 1996), (Radjai 

et al., 1999), (Majmudar & Behringer, 2005), (Zhang et al., 2017)]. Similar information is coded 

in polar diagrams which provide the distribution of the orientation of contact normal vectors. 

The poorly cemented materials (𝑃𝑐𝑒𝑚 < 10 − 25 %) show a ductile behavior, with a 

progressive particle reorganization, and no localized shear observed, Figure 52. They display a 

preferential orientation for force chains inclined at 45° from the upper rock wall, Figure 57 (a). 

Similar force chains orientations have been observed by (Morgan & Boettcher, 1999) for 

circular particles. The change of orientation of normal forces at 45° appears before the effective 

friction peak, showing that the gouge started to dilate before reaching the peak. The evolution 

of the granular flow gives way to simple contact law with interparticle friction only. Once the 

gouge has dilated, grains can reorganize to allow shearing, and the gouge tends towards a steady 

state of sliding. The combination of a limited cementation (mostly frictional contact, no 

cohesion in the sense of Mohr-Coulomb), gouge dilation (Figure 51), and preferred orientation 

of force chains confirm a typical granular Couette flow for the poorly cemented material [(GRD 

Midi, 2004), (Da Cruz et al., 2005)]. 

With the increase of cementation (𝑃𝑐𝑒𝑚 = 38 %), the orientation at 45° is not yet present at 

 r    o   e k “ ”, because no significant motion has occurred yet and grains are still in their 

initial configuration. Instead, there are a large number of smaller ramified force chains 

distributed in a homogenous distribution of force networks. The strength of the material is 

linked to the development of force chains (Zhang et al., 2017), and our results confirm that the 

intensity of force chains is enhanced with cementation, as strength is also enhanced, Figure 57 

(a). Combining force chains and relative damage makes it possible to identify from the force 

network the cemented agglomerates highlighted in section 3.4.2 (red arrows). Each cemented 

agglomerate is crossed by force chains, while isolated frictional particles are not, Figure 57 (a). 

These cemented clusters also modify the particle size distribution within the gouge, which is 

well-known to act on shear bands formation in addition to the initial density of the sample 

(Marone & Scholz, 1989). 

For a dense sample with 95 % cementation, some particles are detached from the cohesive band 

at the end of friction peak, and operate alone (within the active or shearing zone), defining clear 

geometrical asperities. These asperities create contacts between the cemented layer and the rock 

wall, which concentrate the normal load. A steady-state is reached when enough of this 

tribological third body (Chapter 1) has been released to avoid any asperity contact and to 

produce a three-body sliding. Gouge first dilates thanks to the emergence of asperities (i.e. 

grains emerging from cohesive bond breakage) and clusters of grains, forming interparticle 

bridges, which releases gouge in the interface as the rupture is going on. Normal forces 

orientation follows the same trend as the dilation: a first increase at the first step (due to 

interparticle bridge formation) and a decrease back to the initial state, as the majority of 

cohesive bonds are still active, Figure 57 (i). Cementation also enhances local dilation during 



 
90 Chapter 3. Slip behavior of a sheared cemented gouge 

the strength weakening, increasing local porosity inside the gouge as found by (Faqih et al., 

2006). 

 

Figure 57. (a) Snapshot of the force-chains network for dense samples at friction peak [B] and at the end of 

simulation [H]. Force chains are defined according to the typical level of stress present in the system (here the 

applied normal stress) and thickness evaluates between 0 and 1 between the minimum and maximum strength (0 

to 10  N). A cut-off is made at 10  N to have the same visualization for all cases (higher force chains are observed 

for a high percentage of cementation). The norm of the contact force is coded by the thickness and color of each 

chain. In the case of edge-edge contacts, handled through the nodal contacts at the extremities of the contact 

segment, the total resulting force is considered and coded in a unique force chain. It allows to get a grasp on the 

way load is transferred through a granular sample. (b) Zoom in on the material with 𝑃𝑐𝑒𝑚 = 95 %, snapshot of the 

force-chains network at the end of friction peak [F] and the end of the simulation [H]– (i) Tensile contact forces 

orientation allows getting a grasp on the way load is transferred through a granular sample. This information is 

coded in a polar diagram which provides the distribution of the orientation of tensile contacts. 

Evolution of force chains with initial porosity 

Figure 58 compares force chains and normal contact orientation for dense and mid-dense 

     e   W   e er   e  e e     o   e e     zero d      e e    “ ”  de  e      e   e d  o   

homogeneous repartition of the initial preferred orientation of normal forces, and mid-dense 
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samples present normal forces mostly oriented perpendicularly to rock walls, Figure 58 (b). At 

effective friction peak, initially denser samples favor a more homogenous distribution of force 

chains, Figure 58 (a), passing through almost all particles. Results are consistent with the 

previous section showing that the strength increased with a highly cemented and dense sample. 

This difference is assumed to be related to the more brittle behavior observed for dense samples, 

for which no reorganization of the grains occurs before the peak. It preserves the initial 

homogeneous contact network, but makes the failure more sudden, in contrast with mid-dense 

materials where irreversible grains motions occur before the peak. 

 

Figure 58.  (a) Snapshots of the force-chains networks at the effective friction peaks [B] for six chosen cases (0 to 

10  N). For 3 − 4, 40 − 38, and 95 % of cementation. In the pictures, only a quarter of the total gouge is 

displayed, and even if the global behavior is similar to one quarter, force chains are not homogeneously distributed 

within the gouge after friction peak. (b) The graph provides the numbers of contacts with a normal vector oriented 

in a given direction (using polar diagrams where the Theta-axis is the orientation and the R-axis is the number of 

contacts), and with a color evolving during the different stages of each simulation. 

3.5. Rheology and weakening mechanisms 

3.5.1. Critical dilation 

Critical dilation can be defined as the necessary dilation for macroscopic shear failure formation 

[(Kranz & Scholz, 1977), (Scholz, 2019)]. In our simulations, it corresponds to the dilation 휀𝑦𝑝 

obtained at the effective friction peak (Figure 51 & Figure 59) which is different from the final 

dilation 휀𝑦−𝑆𝑆 previously introduced. 
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Figure 59.  (a) Total dilation as un function of slip distance, the marked point locates the critical dilation for the 3 

cemented materials (b) Critical dilation for macroscopic failure for both dense and mid-dense samples as a function 

of the percentage of cementation. 

For cases with limited cementation (𝑃𝑐𝑒𝑚 < 10 %𝑑𝑒𝑛𝑠𝑒 − 25 %𝑚𝑖𝑑𝑑𝑒𝑛𝑠𝑒) – where 100 % 

frictional contact is quickly reached and no localized shear is observed – the critical dilation is 

similar for both dense and mid-dense samples and presents the highest values (~ 2 % in Figure 

59). The initial porosity effect, without cementation, does not have a major influence on critical 

dilation. The high dilation rate presents in the pre-peak phase is consistent with the important 

dilation observed at friction peak.  

For cases with moderate to high cementation (𝑃𝑐𝑒𝑚 > 10 %𝑑𝑒𝑛𝑠𝑒 − 25 %𝑚𝑖𝑑𝑑𝑒𝑛𝑠𝑒), two main 

trends are observed with the increase of cementation: 1) a decrease of the critical dilation for 

mid-dense samples, 2) an enhancement of the critical dilation for dense samples. It can be noted 

that all critical dilations observed in this zone are smaller         zo e “ ”  Figure 59. For 

cohesionless materials, dilation is supposed to be larger for a denser granular gouge, but the 

introduction of cementation creates the opposite effect. Similar results have been found with 

other types of dense cohesive materials experiments (Faqih et al., 2006). The critical dilation is 

here smaller for dense samples than for mid-dense samples, a result that may be due to the real 

cohesion values involved within the sample (i.e. higher for dense sample). 

Comparing shear band formation and critical dilation, we can deduce that with more than 1 % 

of critical dilation (for both dense and mid-dense samples), shear band formation is inhibited. 
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Then, the persistence of shear bands until steady-state mostly depends on cementation, and 

occurs for highly-cemented materials, corresponding to a critical dilation between 0.08 % and 

1 %, zo e “   ”    Figure 59. (Noel et al., 2021) found that for Tavel limestone (11 % initial 

porosity corresponding to our dense sample), a critical dilation of about 1 % has to be reached 

to obtain shear failure of an initially ductile rock subjected to a pore fluid pressure increase. 

Their higher critical dilation could be explained by the fact that they study intact rocks, but also 

by the higher confining pressure used and the presence of fluid. 

3.5.2. Evolution of weakening mechanisms 

𝐷𝑝𝑝 value, similar to the critical distance of slipping, is the distance needed to weaken the fault 

from friction peak to the steady-state of sliding, it is also relevant for rupture energy calculation 

(Chapter 5). 

Two main trends are highlighted for the evolution of 𝐷𝑝𝑝,  with cementation Figure 60 (c). 

Initial porosity seems to affect the weakening length only for cases with limited cementation 

(𝑃𝑐𝑒𝑚 < 10 %𝑑𝑒𝑛𝑠𝑒 − 25 %𝑚𝑖𝑑𝑑𝑒𝑛𝑠𝑒), mid-dense samples need a higher displacement than 

dense samples to reach their steady-state regime (810 vs 300 𝜇 ). When cementation is large 

enough (𝑃𝑐𝑒𝑚 > 10 %𝑑𝑒𝑛𝑠𝑒 − 25%  𝑑𝑑𝑒𝑛𝑠𝑒), the initial state o   oro     doe  ’     e    

additional influence on 𝐷𝑝𝑝, decreasing similarly with 𝑃𝑐𝑒𝑚 for both dense and mid-dense 

samples. The transition between these two trends corresponds to the mechanical limit between 

the cohesionless and cohesive model (i.e. formation of cohesion in the sense of Mohr-Coulomb 

theory) represented by the red line in Figure 60 (c). Adding more cementation within the gouge 

seems to diminish the porosity effect regarding the peak length. The evolution of the peak 

distance 𝐷𝑝 (i.e. distance reached at effective friction peak), is similar to the evolution of critical 

dilation, Figure 60 (b). 

Double weakening shapes are observed in some effective friction curves in Figure 60. This 

pattern seems to be a characteristic of dense and cemented materials, as mid-dense materials 

only show one weakening phase. When it exists, the first weakening period seems to follow a 

decreasing affine law and appears for dense samples with 𝑃𝑐𝑒𝑚 ≥ 10%. Similar double 

weakening has been observed experimentally as reported in an incoming paper from 

(Paglialunga et al., 2021). With the separation into two weakening phases, it appears that Riedel 

bands only form at the beginning of the 2nd weakening phase (letter C in previous figures). In 

fact, the first weakening phase just allows movement within the gouge by breaking some 

isolated bonds, but actual sliding needs dilation to operate and thus is mostly observed within 

the 2nd weakening. Isolating contributions from each mechanism (bond breakage, dilation, 

friction) and through energetical considerations, Chapter 5 provides a detailed analysis of these 

two weakening periods. 

As it is observed, a micro-scale friction variation appears during the 2nd weakening phase, that 

could look like stick-slip instabilities which is a major subject of interest in fault system 

[(Byerlee & Brace, 1968), (Aharonov & Sparks, 2004), (Dorostkar, 2018), (Sathwik Kasyap & 

Senetakis, 2021)]. However, earthquake sliding involves the release of strain energy stored in 

the surrounding rock, at the metric or kilometric scale. Such energy storage is not present in 
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our simulation (no deformable rock walls or stiffness of the loading apparatus), that is why 

these variations should not be considered as stick-slip. The numerical model of [(Aharonov & 

Sparks, 2004), (Ferdowsi, 2014)] studying stick-slip motion does consider a certain stiffness 

connected to their rock walls allowing to study stick-slip properly. 

 

Figure 60. (a) Effective friction curves as a function of the slip distance. (b) Peak distance 𝐷𝑝 (𝜇 ), (c) 

Pea  length 𝐷𝑝𝑝(𝜇 ), for both dense and mid-dense samples, as a function of the percentage of cementation 

within the gouge. 𝐷𝑝𝑝 is the distance between the peak of effective friction and the beginning of the steady-state 

3.5.3.  Cemented materials and Mohr-Coulomb theory 

Cemented gouges have interesting behavior because they are not intact rock and neither are 

simple frictional gouges. In this section, we compare failure criteria applied to intact rock or 

fault gouge layer to the cemented gouges presented in the study in order to evaluate which 

criterion can best fit the failure of cemented gouges. 

(Byerlee & Savage, 1992) also analyzed a fault gouge layer under shearing and observed that 

it behaves as a Coulomb material, with an elastic deformation until failure. However, (Marone 

et al., 1992) proposed another adapted criterion that is more suitable to thin fault gouge layer. 

The two failure criteria considered to support these assumptions are:  

𝜏 𝜎𝑁⁄ = 𝐶 𝜎𝑁⁄ + tan𝜑 (3.6) 

𝜏 𝜎𝑁⁄ =  𝐶 ∗ cos φ 𝜎𝑁⁄ + sinφ (3.7) 

The first criterion (3.6) is dedicated to intact rocks, the normal and tangential stresses 𝜎𝑁 and 𝜏 

 re      ed o      e r  r  k w        e r or e     o             ed “ o  o        re”   d  ro  de  

  e “ r e”  o r-Coulomb properties 𝐶 and 𝜑 of the intact rock. The second criterion (3.7) is 

dedicated to a domain where shearing occurs in a distributed and continuous way and the 
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stresses 𝜎𝑁 and 𝜏 are not requested to apply on a specific crack. Rather, their orientation is 

related to that of the principal stresses that develop in the sheared domain. This is known as 

“ o  o             ”     e      ed    (Marone, 1995), the first criterion could be applied to 

faults with very thin layers of gouge, while the second one might be relevant to the case of thick 

layers of granular gouge where such rotation of the principal stresses could occur. In that case, 

Coulomb plasticity could lead to a reduction of the effective friction of the fault. This 

assumption was validated experimentally in a cohesionless material by (Marone, 1995). 

It is instructive to determine to which extent these two expressions can predict the fault strength, 

 o e    ro    e “ r e”  o r-Coulomb properties of the rock. This comparison can be done 

using our numerical results on fault direct shear tests and biaxial tests. Figure 61  thus presents 

the effective friction in the fault as obtained numerically with direct shear simulations in section 

3.4 of the present work, as a function of the effective friction predicted by both failure criteria 

(3.6) and (3.7) based on our independent determination of 𝐶 and 𝜑. With this graph, the strength 

ratio obtained with both models can be compared (direct shear and biaxial test) realized with 

the same conditions and characteristics (cf. section 3.3.1). Indeed, gouges behaving as granular 

material (i.e. with no cohesion) present lower friction than intact rocks, as predicted by literature 

(points under the dotted line). However, cemented gouges present the opposite behavior once 

the percentage of cementation account for a small cohesion (i.e. for more than 10 % < 𝑃𝑐𝑒𝑚 for 

dense samples and 25 % < 𝑃𝑐𝑒𝑚 for mid-dense samples). The increase of cementation increases 

the effective friction of the cemented gouge compared to intact rock, and the reduction of 

porosity overstate the difference. It appears that the proposed adapted law (3.7) for fault gouges 

(Marone et al., 1992), does not fit very well with cemented gouges either, blue line. The initial 

stress ratio from the Coulomb criterion, equation (3.6), is closer to values found for our mildly 

cemented gouges but is not suitable as cementation increases, grey line. 

 
Figure 61. Effective friction as measured with direct shear experiments (simulation campaign) as a function of 

effective friction as predicted by failure criterion (calculated with internal friction angle and cohesion found with 

Biaxial tests), for dense and mid-dense samples. The blue line (empty marker points) represents the effective 

friction given for sheared gouge with equation 3.7 (Marone et al., 1992) compared to the grey line (filled marker 

points), effective friction for intact rock with equation 3.6 (Handin, 1969). 
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One of the reasons explaining these differences could be the different boundary conditions used 

for the two kinds of tests (direct shear/ biaxial experiment). In particular, the presence of the 

two walls of the fault might act as barriers to the natural development of Riedel shear bands 

and increase the fault strength. Another key of understanding could be the heterogeneity of the 

stress field in the fault (in relation to the kinematic constraints mentioned above), which would 

prevent a simplistic use of the criteria (3.6) and (3.7). As further analyses and simulations are 

needed to confirm these hypotheses, these propositions will be discussed in future work 

comparing different gouges with cement or matrix particles. 

3.6. Concluding remarks 

A 2D granular fault gouge model has been implemented in the framework of DEM in order to 

establish a link between gouge properties (cement and initial porosity) and rheological 

behavior. One originality of this Chapter is the use of the angular and faceted shape of particles 

instead of circular ones. Our results confirm that both initial porosity and cementation influence 

gouge behavior. They play a role in the internal structure and geometry of the gouge and thus 

modify the rheological behavior of the fault. In the range of our numerical experiments (normal 

stress 40 𝑀𝑃𝑎 & slip rate 1 /𝑠), the increase of cementation within the gouge leads to an 

increase of effective strength whereas an increase of initial porosity tends to a reduced strength.  

(i) The strength peak is sharp, short, and intense for dense and highly cemented materials 

and smooth, delayed and of moderate amplitude for mid-dense and moderately 

cemented materials. Brittleness is enhanced with cementation, especially in the case of 

dense materials. It evolves similarly with the internal cohesion (Mohr-Coulomb) within 

the gouge and leads to different failure patterns. The highly-cemented material with low 

initial porosity presents clear Riedel band formation evolving as in the theory of 

(Tchalenko, 1970). The high cohesion and internal friction angle values make this 

material very close to intact rock properties. In opposition, the weakest material is 

obtained with the highest porosity state and for no cementation: no failure pattern is 

observed and a typical granular Couette flow is highlighted. 

(ii) Shear failures need a critical dilation to form. For poorly-cemented material, not 

presenting enough cohesion (i.e. 𝐶 < 1𝑀𝑃𝑎), the same critical dilation is observed for 

both dense and mid-dense samples. The initial porosity does not have a major influence 

on critical dilation for cohesionless materials. However, when cohesion is present within 

the particles, the critical dilation appears to be smaller for denser samples and increases 

with cementation, whereas mid-dense samples present the opposite behavior. 

(iii) Effective friction curves present double weakening shapes for dense samples with 

enough cementation, triggered by different mechanisms (Chapter 5). The peak length 

(analogous to the 𝐷𝑐 from rate and state laws) mainly decreases with the percentage of 

cementation. 

(iv) The increase of cementation increases the effective friction of the cemented gouge 

compared to intact rock, especially with dense cemented gouges. Effective friction, from 

the Coulomb failure criterion or the Coulomb plasticity criterion (Marone et al., 1992), 

does not predict very well our values for cemented fault gouges. The different boundary 
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conditions and stress fields obtained for the direct shear experiment and the biaxial test 

could explain the difference, but further analyses are needed to confirm these 

hypotheses. 

In future work, we will extend this numerical campaign to cover a wider range of normal 

stresses and gouge thickness, in order to derive an empirical slip-weakening friction law based 

on the micromechanical properties of the gouge. This law could then be implemented in 

dynamic rupture modeling at a larger scale for a dialogue with seismological data. An 

interesting line of work could also be to investigate the time scale of the cementation evolution 

in a fault and to evaluate to what extent the associated evolution of the fault strength interacts 

with its seismic cycle. 
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Chapter 4. Rheology and 

weakening of a sheared fault 

gouge with matrix particles 

Main Foreword 

In Chapter 3, we simulated a cemented granular fault zone with angular and faceted grains 

linked by cohesive bonds to model the cementation. Based on the previous description of infill 

material (Chapter 1), we now consider another brecciation process for which the observed infill 

   er          o e   e                 er           ed “   r  ”   r    e    d re er   o  er       

particles produced by previous fragmentation or introduction of sediments within the fault 

gouge (Woodcock & Mort, 2008).  

  e  r        o je    e o            er          o   der    d   e “ e        / eo e r    ” ro e 

of matrix particles as opposed to the physical cementation (bonded law as cohesion) used in the 

previous chapter. Is a very dense granular fault gouge being as resistant to shearing as cemented 

cataclasites? The DEM approach is also suitable for this kind of granular-type filling and this 

chapter is divided into two main parts with two types of granular samples:  

❖ Part A concerns granular samples with only hexagonal matrix particles. This granular 

media represents a highly dense packing of particles and reveals Riedel bands 

formation. This first part gives an understanding of localization patterns and evolution 

in this very dense packing of particles with different gouge characteristics.  

 

❖ Part B presents some results on composite mixtures between angular and faceted grains 

surrounded by hexagonal cells representing a matrix of fines. It highlights similarities 

and differences with the previous model with only matrix particles (Part A) and with 

cementation (Chapter 3). 

As said in Chapter 2, in these models the sliding is imposed by boundary conditions (imposed 

slip velocity), but this is not a realistic case. In real seismic faults, the sliding is driven by the 

elasticity of the surrounding medium, and can therefore take place in a stable or unstable way. 

The models used here are local micromechanical studies of the behavior of fault gouges, which 

are designed to be inserted in larger-scale dynamic models. 

This chapter is partly based on the following papers: 

Casas, N., Mollon, G., & Daouadji, A. (2021). Shear bands in dense fault gouge. EPJ Web of 

Conferences - Powders and Grains, 249, 1–4. 

https://doi.org/10.1051/epjconf/202124911006 

Casas, N., Mollon, G., & Daouadji, A. (2022) The role of matrix particles within granular fault 

gouge through Riedel bands observations. (in prep) 
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Part A – Matrix material and kinematics of 

Riedel bands  

4.1. Foreword 

This first part studies the kinematics and strength of a sheared granular gouge with matrix 

particles alone. The first section 4.2 presents the numerical model and granular materials used 

within the study. As for the previous Chapter 3, a sample characterization is made with biaxial 

simulation on the same granular material used for direct shear experiments. The second section 

4.3 reviews the different behaviors of a sheared matrix gouge obtained for variations in the 

initial parameters of the gouge. The role of the shear modulus, the interparticle friction, and the 

ratio between the thickness of the gouge on the size of particles will be discussed. Finally, the 

last section 4.5 concludes on the main elements highlighted through the entire part A. The main 

schema of part A, Chapter 4 is shown in Figure 62. 

 

Figure 62. Main schema of Chapter 4, Part A 

4.2. Numerical framework and sample generation 

4.2.1. Granular matrix sample 

Creation of the granular media 

The granular matrix is created with hexagonal cells to represent a highly dense packing of 

particles. As the shape is hexagonal, a Voronoï tessellation algorithm is used, in which the size 

of cells and their perturbation (i.e. the inhomogeneity of the hexagonal cells) are specified 
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(Chapter 2). To realize parametric studies, a standard case (M-S   or “   r  -    d rd”     

defined as a reference model. For this model, an almost constant size of cells is considered for 

all particles (∅𝑒𝑞 ≈ 20 𝜇 ), with a perturbation of 0.5, meaning that cells are not perfectly 

regular hexagons, Figure 63. 

 

Figure 63. Matrix shape and size, equivalent diameter 20 𝜇 . Left, zoom in on a 500 𝜇  x 500 𝜇  square part, 

right, zoom in on this sample. 

The initial gouge thickness is equal to 2    and the length is equal to 20   . As in the 

previous model, a Representative Elementary Surface is used here, as a result of the parametric 

study on the model length which is provided in Appendix A4.A. 

Compaction and initial state 

Once the granular sample is generated, it is then inserted between two rock walls. The first 

simulation step consists in compacting the sample with 𝜎𝑁 = 40 𝑀𝑃𝑎 to create a stabilized 

packing of granular material (Chapter 2). As the generated sample is already very compact, 

Figure 63, this compaction stage is only influenced by the numerical stiffness and interparticle 

friction inserted between particles in contact. At the end of the compaction the sample is almost 

identical, but with a little interpenetration between particles (~ 0.1 % of the size of the particle) 

which provides mechanical equilibrium. An interesting point is that the initial porosity within 

the gouge is negligible here, with 𝑃𝑝𝑜𝑟𝑒 < 1 %, resulting in an extremely dense compacted 

sample. 

4.2.2. Numerical setup for direct shear simulations 

The granular matrix is then submitted to direct shear experiments, Figure 64. The lower rock 

wall is fixed and normal stress of 40 𝑀𝑃𝑎 and slip velocity of 1  /𝑠 are imposed on the upper 

rock wall. Periodic boundary conditions are present on both right- and left-hand sides of the 

sample to maintain the continuity of the movement at large slips, but the upper rock wall can 

freely move in the y-direction to allow dilatancy. A dry contact model with rigid bodies is 

considered, without gravity. A Coulomb friction contact law is also settled, meaning that every 

contact depends on the interparticle friction 𝜇𝑛 𝑚, numerical stiffnesses 𝑘𝑛 (constant and equal 

to 101  𝑃𝑎/  in the reference case) and a stabilizing numerical damping 𝛾 (numerically set to 

0.2). To avoid wall-slip effects with smooth boundaries, a certain cohesion is introduced at the 

interface between matrix and rock walls (500 𝑀𝑃𝑎). It enables the creation of a certain 

roughness by cementing particles to the top and bottom layer. 
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Figure 64. DEM model of a direct shear experiment with granular fault gouge composed of matrix particles. V is 

the applied shearing velocity ( /𝑠), 𝜎𝑁 is the normal stress (𝑀𝑃𝑎), 𝑡ℎ𝑖  is the initial gouge thickness ( ) and 𝐿𝑔 is 

the gouge length ( ). 

It can be noted that interparticle friction 𝜇𝑛 𝑚 is equal to 0.3 in the (M-S) reference case, which 

is lower than the one used in the model of Chapter 3. The objective is to test the property of 

matrix particles as a weaker material with limited friction. It should be noted that the boundary 

conditions, in particular the non-deformable walls, can induce differences in the results found 

with those of the literature studying stick-slip experiments (in particular, in the formation of the 

Riedel bands). All the parameters are gathered in Table 4 and are reproducible. 

Table 4. Numerical setup and properties for the experimental campaign (set for standard cases). The top part of 

the table (grey color) concerns properties that do not vary within the simulation campaign. 

Property Associated variable Value 

Normal stress 𝜎𝑁 40 𝑀𝑃𝑎 

Shear velocity V 1  /𝑠 

Rock density 𝜌𝑟 2600 k𝑔/ 3 

Interparticle cohesion 𝐶𝑛 𝑚 500 𝑀𝑃𝑎 at boundaries 

Interparticle friction 𝜇𝑛 𝑚 0.3 

Contact stiffness 𝑘𝑛 & 𝑘𝑡 101  𝑃𝑎/  

Perturbation  𝑃𝑖  0.5 

Sample size 𝑡ℎ𝑖 x 𝐿𝑔
 
 

 
2 x 20    

Particle equivalent diameter  𝑒𝑞  20 𝜇  

Number of particles    115 825 

DEM time step Δ𝑡 5.10−10 s 

Proximity updating period Δ𝑡−𝑐𝑜𝑛𝑡𝑎𝑐𝑡 10−8s 

 

4.2.3. Characterization of matrix material with biaxial tests 

Using the same Mohr-Coulomb representation as in Chapter 3, independent biaxial simulations 

of samples were run with the characteristics previously presented for sheared fault gouge (in 

terms of grain shapes, size distributions, initial solid fraction, interparticle cementation, and 

interparticle friction). Rectangular granular samples (4    wide and 10    high) are placed 
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between four rigid walls. The lower wall is fixed in displacement and the upper wall is submitted 

to a constant downwards velocity 𝑉𝑦, and the lateral walls are submitted to a confining pressure 𝜎3, 

fixed in vertical and rotational motions, and free to move horizontally.  

Three tests are performed on the standard case (M-S), with confining stresses of 10 𝑀𝑃𝑎, 40 𝑀𝑃𝑎, 

and 80 𝑀𝑃𝑎 and for two interparticle stiffnesses (𝑘𝑛 = 1015,1016 𝑃𝑎/ ), Figure 65 (a) and (b). 

The vertical stress 𝜎1 is monitored during vertical compression, providing a series of pictures of 

cumulated slip (vertical displacement minus the elastic part), Figure 65 (c). 

 
Figure 65. Illustrative results for a standard material (M-S) with different initial interparticle stiffness (a) Major 

principal stress as a function of vertical shortening, and (b) associated Mohr circles, for three confining stresses 

(10 𝑀𝑃𝑎, 40 𝑀𝑃𝑎, and 80 𝑀𝑃𝑎) for samples with 𝑘𝑛 = 101  𝑃𝑎/  and 𝑘𝑛 = 1016 𝑃𝑎/ . (c) Snapshots of 

cumulated slip (vertical displacement minus the elastic part) for biaxial experiment with an elastic membrane, for 

an applied stress 𝜎𝑛 = 10 𝑀𝑃𝑎 for a standard case with 𝑘𝑛 = 101  𝑃𝑎/ . Each point in the curve corresponds to 

an image above. The evolution of shear bands can be observed and the orientation angle increases with vertical 

shortening (𝛼ℎ > 𝛼𝑒). 

In Figure 65, the slope of shear bands changes between the peak (e) and the plateau (h), this is 

because the effective friction also changes, corresponding to a reorganization of the failure 

pattern and a rotation of the stress field. Based on the observed results: 

− Almost no cohesion is observed for matrix material (in the sense of Mohr-Coulomb), 

Figure 66. It is in adequation with the description of matrix material which is an 

incohesive material (Chapter 1).  

− A change of interparticle stiffness does not have much influence on the internal friction 

angle, but increases the effective friction peak observed, Table 5 and Figure 66. By 

multiplying by ten the numerical stiffness, the resulting Elasticity modulus is ten times 
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higher. This will probably have an impact on gouge kinematics. This point will be 

discussed in section 4.3. 

− The orientation angle of the major shear bands formed is growing from the effective 

friction peak to the steady-state zone, Figure 65 (c). 

 
Figure 66. Internal friction angle as a function of Mohr-Coulomb cohesion for the simulated materials, as 

characterized by numerical biaxial tests, the same graph is used in Chapter 3. Matrix samples are marked by 

hexagons with two different interparticle stiffness, 𝑘𝑛 = 101  𝑃𝑎/  (green) and 𝑘𝑛 = 1016 𝑃𝑎/  (red). It can be 

noted that the samples used are large enough to avoid any size effect or any thickness dependence. The discs 

correspond to experimental characterizations of different rocks referenced in (Schellart, 2000) listed in the table 

next to the graph. 

Table 5. Numerical results of the biaxial campaign for two interparticle stiffnesses. 

Property 𝒌 =  𝟎 𝟓 𝑷𝒂/𝒎 𝒌 =  𝟎 𝟔 𝑷𝒂/𝒎 

Effective friction peak 𝜇𝑝
∗  0.94 1.17 

Internal friction angle 𝜑 43.3° 49.5° 

Cohesion C 6.4 MPa 2.0 MPa 

Elasticity Modulus E 18.96 GPa 118.39 GPa 

 

4.3. Matrix characteristics & gouge kinematics 

In order to characterize the matrix material, several parametric studies are performed and 

presented in this section. The purpose of these studies is not only to observe the influence of 

each parameter on the mechanical behavior but also to observe the rheological behavior through 

Riedel band formation and evolution. The wide range of variations in Riedel bands deserves to 

be properly presented here as they can be a marker of the stability of the system [(Byerlee, 

1978), (Gu & Wong, 1994)]. If an unstable frictional sliding is observed, it will certainly show 

Riedel bands localization, although the reverse proposition is not necessarily true. Indeed, 

Riedel bands can be observed in stable sliding without any instabilities. The angle between the 

R-band and the fault core boundary could be a critical point to distinguish whether instabilities 
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can be present or not [(Moore et al., 1988), (Moore & Byerlee, 1992)], and this angle depends 

on physical and numerical properties of the model. 

4.3.1. Qualitative and quantitative results for the reference case 

This first subsection aims to present typical results obtained for the standard granular sample 

(M-S) as it will be used for comparison in the rest of the chapter. Typical effective friction 𝜇∗ 

and dilation 휀𝑦 are presented in Figure 67, and Figure 68 shows deformation profiles observed 

at different times of the simulation, (with letters from A to E from Figure 67).  

 
Figure 67. Effective friction 𝜇∗(grey curve) and dilation 휀𝑦 (red curve) as a function of the slip distance for the 

standard case (M-S). A is the end of the elastic zone. The zone from zero to B describes the pre-peak zone, followed 

by the slip weakening zone (B to D) and then by the steady-state zone (D to E). 휀𝑦−𝑝
∗  represents the critical dilation. 

We distinguish three main steps within direct shear experiments, according to the main stages 

of Riedel shears formation (Chapter 1): 

− A pre-peak zone is first observed, which is composed of an elastic phase (0-A) involving 

the shear modulus of the gouge and the overall stiffness. Once the elastic zone is over, 

the sample starts to deform in a non-reversible way until the friction peak (A-B), for 

which the maximum shear strength of the gouge is reached (B). During all this part, the 

sample dilates (red curve), but the critical dilation 휀𝑦−𝑝 is still lower than the averaged 

steady-state dilation 휀𝑦−𝑆𝑆. As presented in Chapter 1, direct shear makes appear typical 

patterns of shear bands, called Riedel shear bands for a very dense granular sample 

[(Tchalenko, 1970), (Marone, 1998), (Bedford & Faulkner, 2021)]. These patterns 

follow closely what is commonly observed in natural faults (Y. Katz et al., 2004). Just 

before friction peak (B), five main Riedel bands have formed. They can be separated 

into two kinds of low R-bands: primary R-bands  3,   , and    (appearing first) and 

secondary  -bands  1 and  2 with slightly higher Riedel angle orientation 𝛼𝑖. 

− Once the friction peak has passed, we enter the slip weakening zone, or post-peak phase 

(B to D), where the friction gradually decreases until it reaches a friction stabilization 

plateau at D. The dilation is not yet at its maximum. In this zone, primary  -bands 
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disappear in favor of the two main secondary R-bands  1 and  2, which localize all the 

gouge deformation (Figure 68). A boundary shear  1 also starts growing at the top of 

the gouge layer. 

− Once the steady-state zone is reached (D to E), and without modification of numerical 

parameters, the gouge reaches a stationary state of evolution. The friction evolves very 

weakly around a mean value which is similar in most of the simulations and ranges 

between 0.4 and 0.5. From this moment, the dilation of the granular sample is maximum 

and stabilized. Even though the main R-bands do not evolve anymore, the  1-band is 

fully formed at the top rock wall (D), and a secondary  2-band is partly observed at the 

bottom rock wall. 

 
Figure 68. Solid fraction snapshots for standard sample (M-S). The solid fraction is used here to observe the 

rheology and deformations within the granular gouge and underline zones of slip and shear concentration. Letters 

correspond to different steps in the effective friction curve Figure 67. The solid fraction is plotted between 0.8 and 

1.  1 and  2 are secondary R-bands,  3,   , and    are primary R-bands, orientated at angle 𝛼𝑖 from the direction 

of shearing.   
  are conjugate Riedels orientated at angle 𝛼𝑖

  from the direction of shearing. Y is the slip localisation 

at the boundary:  1 is the main localisation zone occupying all the slip surface and  2 is a partially boundary zone 

at the opposite surface. [MOVIE] 

Conjugate Riedel bands  ′ are also observed in the simulations in the slip weakening and 

steady-state phases. These are oriented at about 𝛼 ≈ 60° from the top wall, a higher angle than 

for simple tensile  -bands (oriented in the direction of the major stress at 45°), but lower than 

that described for  ′-bands observed in the literature, which approaches 75°[(Davis et al., 

2000), (Y. Katz et al., 2004)]. It is assumed that this is a rotation of the  -bands tending towards 

 ′-bands, as in the scheme presented by (Y. Katz et al., 2004). Moreover, the theory of Riedel 

bands is based on the Mohr-Coulomb model, which is an idealized model that does not consider 

the latest shear variation. It is thus considered that the bands observed between 50 and 60° are 

indeed   -bands according to their link with the observed Riedel structures. 
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Although the solid fraction is an accurate and relevant quantity to follow in order to study the 

formation of Riedel bands, similar results can be observed with velocity profiles as presented 

in Figure 69. They show that the highest velocity discontinuities are concentrated within Riedel 

and boundary shear bands, especially in the middle of the weakening part (C). Once the gouge 

is stabilized, the 𝑥-velocity discontinuity is localized in the  -band in the upper part of the 

gouge and equal to the applied shear velocity of 1  /𝑠. Changing the length of the fault gouge 

sample does not inhibit the formation of shear bands but it modifies the rate of friction 

weakening with the slip distance (Appendix 4.A).  

 
Figure 69. Velocity profiles in the 𝑥-direction for standard sample (M-S). Letters correspond to different steps in 

the effective friction curve Figure 67. The velocity profile is plotted between −1 and 1  /𝑠. [MOVIE] 

4.3.2. Influence of interparticle friction and particle shape 

The standard model is used here with a modification of interparticle friction (𝜇𝑛 𝑚) or of the 

initial shape of particles (with a variation in perturbation 𝑃𝑖). Analyses of interparticle friction 

and particle shape are gathered in this section because they appear to have similar consequences 

on Riedel band formation. The different modified samples are gathered in Table 6 and the rest 

of the parameters are identical to those presented in section 4.2.2. 

Table 6. Sample names and associated modifications with standard case (M-S) presented in section 4.3.1. 

Section Sample Name Modified variable 
Numerical 

value 

i 

M-F01 
Interparticle 

friction 

𝜇𝑛 𝑚 

0.1 

M-F02 0.2 

M-F06 0.6 

ii 
M-P-02 

Perturbation shape 

𝑃𝑖 

0.2 

M-P-08 0.8 

X-Velocity 

(m/s)

A

B

C

300

𝜇 

𝐴’

https://youtu.be/F-s2-xKWq50
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i. Interparticle friction 

Numerical experiments are difficult to calibrate, as input data injected in the model are poorly 

documented in real granular media (i.e. interparticle friction). A change in interparticle friction 

coefficient from 0.1 to 0.6 can yield significant differences in friction peak values, Figure 70 

(a). But all numerical experiments tend to the same averaged friction at a steady-state (𝜇𝑠𝑠
∗ =

0.42).  

 

Figure 70. (a) Effective friction 𝜇∗ as a function of the slip distance (𝜇 ) for different interparticle friction 

(𝜇𝑛 𝑚  anging f o  0.1 to 0.6). (b) Dilation 휀𝑦 as a function of the slip distance (𝜇 ) for the same materials. The 

solid fraction is displayed for three different interparticle frictions (𝜇𝑛 𝑚 = 0.1, 0.3 & 0.6), (c) at friction peak B, 

(d) at slip distance C, (e) at slip distance D. (f) Zoom in on the Weakening zone, point C. The grey and dashed 

curve presents the (M-S) case. 
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A modification in interparticle friction changes the main orientation of Riedel shear bands (≈

16 ° from the horizontal shear direction with 𝜇𝑛 𝑚 = 0.6 and ≈ 6 ° for 𝜇𝑛 𝑚 = 0.1). These 

values are inferior to the orientation from Mohr-Coulomb theory, requiring an angle equal to 

𝜑/2 for direct shear, which corresponds to 21.5° for the (M-S) case. Increasing interparticle 

friction also seems to increase the number of Riedel bands formed at the beginning of the 

friction peak ( 2 in Figure 70 (c)) and within the decreasing friction part (𝐶2 in Figure 70 (d)). 

This augmentation results in reducing the averaged distance d between Riedel bands. Conjugate 

Riedels (> 45 ° from the horizontal shear direction) are also more pronounced with higher 

friction, (at 𝐶2 in Figure 70 (c)). 

The two types of Riedel bands described as low-angle ( ) and high angle ( ’) do not have the 

same growth pattern. They both depend on porosity-weakening and strain-rate-weakening 

mechanisms (R. Katz et al., 2006). The initial state of porosity is not modified here, but 

interparticle friction plays a role in the rheology of the granular media, as it changes the contact 

between every hexagonal cell. It may explain why high-angle Riedel bands are more 

pronounced with higher friction. The increasing number of Riedel bands with interparticle 

friction can be explained with contact mechanics (Morgan, 1999). For the peak phase, when 

𝜇𝑛 𝑚 is low, slip may occur between hexagonal cells, and particles are mobilized within the 

shear zone, with minimal dilation. With a higher 𝜇𝑛 𝑚, sliding is partly inhibited and particles 

tend to separate leading to higher dilations, and thus in our case, higher number of Riedel bands 

(i.e. dilation in specific direction). However, at the end of weakening, Riedel bands reduce 

toward a stabilized form and thickness. The observed thickness of the  -bands within the 

weakening phase also seems to increase with increasing friction, Figure 70 (f). As shown in 

Figure 70 (a), an interparticle friction of 0.6 also leads to a more sudden post-peak weakening, 

which is prone to switch the fault behavior from a ductile aseismic response to a brittle seismic 

slip, depending on the stiffness of the surrounding medium. 

ii. Shape of particles and irregularities 

The evolution of particle shape is settled at the creation of the matrix sample by varying the 

“ er  r    o ”   r  e er       er       ree d   ere    er  r    o   (0.2, 0.5, and 0.8) are used 

with from almost perfect hexagonal cells (𝑃0.2) to more angular and random hexagonal cells 

(𝑃0.8). Figure 71 presents the evolution of effective friction and dilation as a function of the slip 

distance for these three different initial shapes of particles. (Mair et al., 2002) used 3D 

experimental data, and (Nouguier-lehon et al., 2003) used 2D numerical modeling, in order to 

analyze the influence of grain shape and angularity on the behavior of granular materials. Both 

studies result in the same conclusion: the increase of angularity increases the resistance to 

friction, and thus the effective friction peak. Our grains shapes are not perfectly hexagonal here, 

and particles present a small variation in angularity according to the perturbation applied. This 

difference remains quite low as the global shape is mainly hexagonal, but can explain the small 

difference in friction peak observed in Figure 71 (a). Due to their homogeneity and less angular 

shape, the 𝑃0.2 material also presents less dilation than the two other granular media, Figure 71 

(b). 
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Figure 71. (a) Effective friction as a function of the slip distance (𝜇 ) for different initial shape perturbations (Pi =
0.2, 0.5 & 0.8). (b) Dilation as a function of the slip distance (𝜇 ) for the same cases. The grey and dashed curve 

presents the (M-S) case. 

Visual analysis shows that the 𝑃0.2 material is pathological and too regular to represent the real 

granular samples observed in faults. However, its representation gives interesting patterns and 

rheological behavior concerning Riedel bands in Figure 72. 

 

Figure 72. Solid fraction at two different times of experiments, for the three materials (Pi = 0.2, 0.5 & 0.8). (a) At 

friction peak B, (b) at steady state E. These two different moments are displayed in Figure 71 by points B and E.  

(b)

(a) 𝜇𝑝
∗   

𝐸

𝑃0.2

𝑃0. 
𝑃0.8

Steady-state zone

E
ff

ec
ti

v
e 

F
ri

ct
io

n
 𝜇

∗
D

il
at

io
n

  
𝑦

(%
)

Slip distance (𝜇 )

Slip distance (𝜇 )

100 200 300 400 5000 600

100 200 300 400 5000 600

0.7 1
Solid Fraction

(a) Friction peak B

(b) End of simulation E

 ’ 

𝑃0.2

 

 

 

𝑃0. 

𝑃0.8

𝑃0.2

𝑃0. 

𝑃0.8



 

 

112 Part A – Matrix material and kinematics of Riedel bands 

At friction peak, the regularity of the shape of the cells seems to be quite important in the 

development of shear bands. In the same way as interparticle friction, an increase in angularity 

also implies a change in the number of Riedels. A higher angularity (similar to more disorder, 

𝑃0.8) results in a larger number of low-angle Riedels at friction peak, less marked, and of lower 

thickness. We also observe some possible high-angle Riedel bands  ’ (against no high-angle 

Riedel for 𝑃0.2). When the steady-state is reached, all three samples have the same number of 

low-angle Riedels   (secondary Riedels). These bands have a similar orientation 𝛼𝑖 and 

thickness, meaning that the change in the angularity of particles is too small to affect Riedel's 

angle orientation at steady-state. To better understand how these mechanisms operate, two 

chains of grains were followed during the deformation of the gouge, Figure 73. Comparing both 

chain's evolution, we first note that the place where the chain breaks is composed of several 

grains belonging to the Riedel band. This result is different from the patterns of granular chain 

theory proposed by (Anthony & Marone, 2005), where the breaking point of the chain just gives 

two different chains sliding parallel to each other. However, in their case, no  -band was 

present within the granular sample. We conclude that the presence of low and high  -bands 

modifies the kinematic of particles chains. 

 
Figure 73. The figure displays the evolution of two chains of particles within the principal low-angle  -band at 

several instants of the simulation for the two extreme perturbation cases (𝑃0.2 and 𝑃0.8). (a) Effective friction curves 

with instants taken (b) Chain 1, one chain of the 𝑃0.2 case at five different moments. (c) Chain 2, one chain of the 

𝑃0.8 case at five different moments. 
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Although the total dilation in Figure 71 (b) is higher for the 𝑃0.8 case, the Riedel of the 𝑃0.2  

case dilates more than the 𝑃0.8 Riedel just before friction peak (larger band in Figure 73 (b) n°3 

and (c) n°2). It explains the higher thickness observed in Figure 72 (a). The initialization and 

development of shear bands are often accompanied by an increase of the void ratio and particle 

rotations inside the shear band (Chapter 1). This phenomenon is specific to the shape of particles 

which needs to create spaces before particles movements. However, at the steady-state, both 

chains tend to have the same thickness, with 3-4 grains belonging to the Riedel, consistent with 

previous Figure 72 (b).  

 

The results from this section are summarized in the following Figure 74 with the effective 

friction curve and Riedel structure formed at steady-state of sliding. 

 

Figure 74. A simplified view of the influence of the interparticle friction 𝜇𝑛 𝑚 and the angularity of the particles 

𝑃𝑖  on gouge strength and rheology. 𝜇∗ is the effective friction during the slip of the gouge. The effective friction 

peak 𝜇𝑝
∗  and is the angle between the direction of shearing and the main Riedel band 𝛼𝑖 are both increasing with 

an increase in 𝜇𝑛 𝑚 or 𝑃𝑖 . 
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4.3.3. Influence of the number of particles within the gouge thickness and 

Global Stiffness 

In this section, two ways of modifying the global stiffness of the gouge layer are compared: an 

increase in the interparticle stiffness or in the size of particles. The different mechanisms 

influence the formation and evolution of Riedel bands in the granular gouge. The corresponding 

samples variation are gathered in Table 7. 

Table 7. Sample names and associated modifications with standard case (M-S) presented in section 4.3.1. 

Section Sample Name Modified variable Numerical value 

i 

M-K-2 
Interparticle stiffness 

𝑘𝑛 

2.101  Pa/  

M-K-5 5.101  Pa/  

M-K-10 1.1016 Pa/  

ii 

 

M-PS-30 
Size of particles 

 𝑒𝑞 
 

30 μ    
M-PS-40 40 μ    
M-PS-50 50 μ    

M-PS-30-Keq Size of particles and 

equivalent stiffness 

 𝑒𝑞 
and 𝑘𝑒𝑞 

30 μ  − 6.8 101  Pa/  

M-PS-40-Keq 40 μ  − 4.7 101  Pa/  

M-PS-50-Keq 50 μ  − 4 101  Pa/  

iii 

M-Th-1 Thickness of the 

gouge 

𝑡ℎ𝑖  
 

1 mm 

M-Th-3 3 mm 

M-Th-4 4 mm 

i. Interparticle stiffness modification 

How interparticle stiffness acts on Riedel band formation? To be in the same conditions as for 

the first model (Chapter 3), and because the magnitude of particle diameter was the same, the 

standard case (M-S) was implemented with an interparticle stiffness of 101  Pa/  (section 

4.2.2) and then by varying 𝑘𝑛 from two to ten times the reference value (respectively samples 

M-K-2 and M-K-10). 

The increase of stiffness both increases the effective friction peak, the shear modulus (later 

discussed), and the total energy released by the weakening phase, Figure 75 (a) & (b). The 

pattern of the friction curve was predictable for the elastic part, as numerical stiffness is only 

supposed to play on the overlapping of particles which modifies the elastic part of the effective 

friction curve: an augmentation in interparticle stiffness increases the global stiffness and thus 

the shear modulus. But we would have thought that the friction weakening part would follow a 

similar slope for each granular sample. Such a discussion can only take place when the sliding 

scenario is well established, which will only be the case in the next Chapter 5: it is necessary to 

save explanations for later. 

A difference in interparticle stiffness (i.e. modification in shear modulus) also seems to affect 

the angle orientation of Riedel bands, Figure 75 (c). In the case with higher stiffness, the 

orientation angle of the main Riedel band 𝛼𝑖 is reduced from 12 ° to 7 ° and the number of 

Riedel bands at friction peak is reduced to one big Riedel band. 
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Figure 75. (a) Effective Friction as a function of the interparticle stiffness at friction peak and averaged value for 

the steady-state zone. The samples are M-S, M-K-2, M-K-5, and M-K-10 (respectively 101  Pa/ , 2.101  Pa/ , 

5. 101  Pa/  and 1016 Pa/ ), for two samples lengths (L=4mm and 20 mm) (b) Peak zone for the two extreme 

stiffness cases M-S and M-K-10 (101  Pa/  and 1016 Pa/ ) with peak location. (c) The solid fraction between 

0.7 and 1 for the two cases in (b) at B. 

Even after reaching the steady state, it can be observed that the increase in stiffness has 

completely changed the kinematics inside the gouge, Figure 76 (a). The (M-K-10) material has 

a single final  -band that runs the length of the gouge and appears to have two slopes with 

different orientations. In this simulation, the  -localization occurred on the lower part of the 

gouge, as the entire upper part moves as one unit, as seen in the velocity map, Figure 76 (c3), 

unlike the (M-S) material which localizes at the top, due to the left Riedel band which only 

allows part of the gouge to move along the 𝑥-axis. 

The  ’-bands rotate at a higher speed than the  -bands and usually disappear as they grow to 

give way for  -bands.  ’-bands are rarely observed because of their short duration and limited 

thickness [(Morrow and Byerlee, 1989), (Logan et al., 1992), (Morgan & Boettcher, 1999)]. 

That is why in other studies [(Schmocker et al., 2003), (R. Katz et al., 2006)], the low-angle  -

bands are the only bands observed. In this study, high-angle Riedel bands  ’ are very 

pronounced in the case with higher stiffness, Figure 76 (a) & (c1). These  ′-bands are present 

during the whole simulation and seem to be responsible for the difficulty of the material (M-K-

10) to deform by shearing, inhibiting multiple  -bands formation. 

The distribution of force chains in the gouge allows us to better understand the formation of  ′-

bands. While the  -bands seem to correspond to an area free of force chains, the  ′-bands show 

the opposite behavior with  ′-bands located where force chains are connected within the  -

band, Figure 76 (c2). It explains why they are more pronounced for stiffer or stronger materials 

and with a higher magnitude of force chains. 
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Figure 76. (a) The solid fraction between 0 and 1 for the two samples at E, Figure 75 (b). (b) Details on gouge M-

S (b1) Solid fraction between 0 and 1, (b2) Snapshot of the force-chains network (from 0 to 10    ), (b3) Velocity 

profiles in the 𝑥-direction (between 1 and −1  /𝑠); (c) Details on gouge M-K-10 (c1) Solid fraction between 0 

and 1, (c2) Snapshot of the force-chains network (from 0 to 10   ), (c3) Velocity profiles in the 𝑥-direction 

(between 1 and −1  /𝑠). Force chains are defined according to the typical level of stress present in the system 

(here the applied normal stress) and thickness and color are evaluated between the minimum and maximum contact 

force (0 to 10   ). A cut-off is made at 10    to have the same visualization for all cases (higher force chains are 

observed for higher stiffness). 

ii. Size of particles and equivalent stiffness 

The constant initial gouge thickness (𝑡ℎ𝑖) chosen in models implies that an increase in the size 

of particles also increases the global stiffness of the granular sample, Figure 77 (a), (c), (d) (full 

lines). Indeed, the places of elastic accommodation are much less numerous while having the 

same individual elastic response. The size augmentation reduces the total number of particles 

in the gouge thickness from 100 to 40 (respectively for (M-S) ( 𝑒𝑞 = 20 𝜇 ) and (M-PS-50) 

 ( 𝑒𝑞 = 50 𝜇 )), and leads to a similar behavior as the one observed for a modification of 

interparticle stiffness (Figure 75): an increase of effective friction peak and a longer slip 

weakening part. However, the steady-state effective friction is increasing from 0.4 to 0.5, Figure 

77 (c), contrary to all the previous simulations observed. 
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Without the stiffness effect 

In order to only study the influence of cell size variation, the interparticular stiffness is modified 

to keep the same initial shear modulus for all models, Figure 77        d  o re o e   e “      e   

e  e  ”. The secant shear modulus is selected similar to the one of the standard material (M-S) 

and calculated at 40 % of the maximum shear stress (36.5 𝑀𝑃𝑎). Then, a new stiffness 𝑘𝑒𝑞 is 

calculated for each model with a diameter of cells  𝑖, as 

𝑘𝑒𝑞𝑖
= 𝑘𝑛

𝐺𝑀−𝑆

𝐺𝜙𝑖

(4.1) 

where 𝑘𝑛 is the interparticle stiffness of the standard case (101  Pa/ ), 𝐺𝑀−𝑆 is the shear 

 od     o    e     d rd    e  w       e  ’  d   e er o  20 µ , and 𝐺𝜙𝑖 the shear modulus 

corresponding to each size variation (Appendix A4.C). The equivalent stiffness 𝑘𝑒𝑞𝑖
 is then 

inserted in the numerical model, leading to the results presented in, Figure 77 (b) and with 

dotted lines in Figure 77 (c) & (d), corresponding to samples (M-PS-30-Keq), (M-PS-40-Keq), 

and (M-PS-50-Keq). 

 
Figure 77. This figure presents results from two simulation campaigns related to global stiffness variation: (a) 

Effective friction curves for a variation in cells size only (from 20 to 50 µ  with an interparticle stiffness of 

101  𝑃𝑎/ ) and, (b) Effective friction curves for a variation of both cells size and interparticle stiffness to have 

the same secant shear modulus for each simulation (interparticle stiffness of 101  Pa/ , 6.8 101  Pa/ ,
4.7 101  Pa/ , 4 101  Pa/ ), (c) Effective friction results as a function of the size of the cells for both simulation 

campaigns (d) Steady-state averaged dilation (%) as a function of the size of the cells for both simulation 

campaigns. The grey curve presents the (M-S) case. 
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The direct consequence of an increase in the size of particles (without stiffness effect) is a longer 

slip weakening duration, meaning that more energy is needed to deform the gouge and to reach 

a steady state. But it also means that this long and smoother slip weakening may reduce the 

probability of a big instability to occur (discussed in Chapter 5). The pre-peak section, on the 

other hand, is identical for all grain sizes, which validates the stiffness calibration of Eq. (4.1). 

The equivalent stiffness also allows keeping 𝜇𝑝
∗  and 𝜇𝑆𝑆

∗  almost constant, dotted lines Figure 77 

(c). However, the value of 𝜇𝑆𝑆
∗

 
 obtained for (M-PS-50) is biased because it has not yet reached 

its stabilized steady-state of sliding in the picture. 

From a purely kinematic point of view, by doubling the particle size, the steady-state dilatancy 

is not doubled for the same interparticle stiffness (full red line, Figure 77 (d)). But if one passes 

in equivalent stiffness, (i.e. only considering the change of particles size), a multiplication by 

two of particles size doubles the steady-state dilatancy value (from 0.04 to 0.08 %, Figure 77 

(d), red dashed line). 

Riedel angle 

The angle of the main Riedel band at friction peak seems to depend on the shear modulus value, 

as we found the same angle for the standard case (a) in Figure 78 and the case (c) (which have 

the same shear modulus), whereas the case (b) presents a different Riedel angle (and a different 

shear modulus). At this step, it can be hypothesized that the size of particles does not change 

the rheology of the gouge but changes the temporality of Riedel bands formation and 

particularly the duration of slip weakening. 

 
Figure 78. The solid fraction between 0 and 1 at friction peak B for three samples: (a)  𝑒𝑞 = 20 𝜇  (𝑏)   𝑒𝑞 =

50 𝜇  for the standard stiffness and (c)   𝑒𝑞 = 50 𝜇  with equivalent stiffness. 

Conjugate Riedels (𝑹’) 

The effect on  ’-bands is similar to the one observed for a change in interparticle stiffness. By 

increasing the size of particles,  ’-bands become more persistent and may have consequences 

on the longer critical slip distance observed. The antithetic particle movement, due to the 

persistence of  ’-band, appears to modify the entire kinematics with the creation of a Riedel 

structure [(Y. Katz et al., 2004), (Y. Katz & Weinberger, 2005)] during the slip weakening part 

observed in Figure 79. They are mainly caused by granular flow sub-parallel to the  -bands, 

which both induce grain reorganization and rotation of  ’ (Y. Katz et al., 2004). Although 
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Riedel structures are more visible when the size of particles is increased, in Figure 79 (d), we 

suppose that all gouge models evolve as a kind of Riedel structure. The reason why they are 

more visible with larger particles is that increasing the size of particles, increases the 

interparticle stiffness and thus force chains between particles. 

 
Figure 79. The solid fraction between 0.7 and 1 at point E (steady-state of sliding), for the four samples with 

equivalent stiffness ((a)  𝑒𝑞 = 20 𝜇  (𝑏)   𝑒𝑞 = 30 𝜇  (c)   𝑒𝑞 = 40 𝜇   and (d)   𝑒𝑞 = 50 𝜇  ). The angle 𝛼𝑖 

represents the orientation of the  -bands from the direction of shearing and decrease with increasing particle size: 

𝛼1−𝑎 > 𝛼1−𝑏 > 𝛼1−𝑐 > 𝛼1−𝑑. 

iii. Gouge thickness 

To a certain extent, decreasing the thickness of the granular sample has similar frictional 

behavior as an increase in the size of cells. Indeed, Figure 80 (a) shows that the same number 

of particles within the gouge thickness (𝑛𝑏1 = 𝑡ℎ𝑖/ 𝑒𝑞) leads to the same effective friction at 

peak and steady-state for two kinds of study: the one with reduction of initial thickness but with 

the same size of particles (grey line) or the one with an increase in the size of particles (section 

ii), with the same initial thickness and without stiffness effect in yellow (equivalent stiffness 

previously described). However, the dilation behavior is not similar, Figure 80 (b). 

 
Figure 80. (a) Effective friction as a function of the number of particles within the gouge thickness 𝑛𝑏1, (b) 

averaged dilation at steady-state, obtained for variations in gouge thickness (full markers with a thick line, grey) 

and variations of the size of particles (yellow markers, study with equivalent stiffness). The pointed rectangles 

surround the two cases with the same number of particles within the gouge thickness (𝑛𝑏1 =50 particles) for the 

sample (M-Th-1) with an initial thickness of 1 mm and equivalent cells diameter of  20 and the sample (M-PS-

40-Keq) with an initial thickness of 2    and equivalent cells diameter of   0. 
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The ratio of gouge thickness to grain size 

Two samples with the same ratio of gouge thickness to grain size are compared: (M-PS-40-

Keq) and (M-Th-1), which both have 50 particles within the gouge thickness. The box in Figure 

80 shows their mechanical characteristics, but to have a more precise comparison Figure 81 is 

added with the evolution of effective friction and dilation as a function of the fault slip distance.  

 
Figure 81. (a) Effective friction 𝜇∗as a function of slip distance  𝑑(𝜇 ). (b) Dilation 휀𝑦 (%) as a function of slip 

distance  𝑑(𝜇 ). (c) Effective friction 𝜇∗ as a function of 𝑛𝑆𝑑, which is the ratio between the fault slip distance  𝑑 

and the equivalent diameter of particles  𝑒𝑞 . (d) Dimensionless dilation 𝑛𝑌(number of particles) as a function of 

𝑛𝑆𝑑. The two cases in the hyphen box in Figure 80 are displayed: a simulation with a gouge thickness of 2 mm, an 

equivalent cell diameter of   0 and an equivalent stiffness of 4.7 101  Pa/  (M-PS-40-Keq), and a simulation of 

1 mm thickness, with an equivalent cell diameter of  20 and the standard stiffness of 101  Pa/ , (M-Th-1). 

Although the resulting peak of effective friction is similar in both cases, Figure 81 (a), the 

friction evolution as a function of slip is very different. Indeed, sample (M-PS-40-Keq) needs 

almost twice more slip along the fault gouge to reach the resistance peak (184 µ  vs 83 µ ) 

and then to reach the steady-state plateau zone (700 µ  vs 400 µ ). These results are 

consistent with the results presented for equivalent stiffness. Similarly, the averaged dilation 

휀𝑆𝑆 in the steady-state zone of the sample (M-PS-40-Keq) is doubled (0.078 vs 0.035), Figure 

81 (b). 

However, results can also be presented with dimensionless parameters (right side pictures), 

considering: the fault slip distance as a dimensionless number 𝑛𝑆𝑑, number of particles (or ratio 

between the fault slip distance  𝑑 and the equivalent diameter of particles  𝑒𝑞 ), and dilation as 

𝑛𝑌 which is the ratio between the 𝑦-displacement of the rock wall divided by the equivalent 

diameter of particles  𝑒𝑞 (number of particles). With this representation, it is observed that both 

friction and dilation curves are similar. These two simulations also have similar tangent and 

secant shear moduli (respectively 𝐺𝑡𝑎𝑛 = 12.2 𝐺𝑃𝑎 et 𝐺𝑠𝑒𝑐 = 6.2 − 5.77 𝐺𝑃𝑎). Figure 82 

compares Riedel bands for these two cases and displays the same type of deformation for both 

simulations at steady-state. The low-Riedel ( ) of both models are oriented at an angle equal to 
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8 − 9 °, and similarly, the high-Riedel angles ( ’) are both oriented at an angle equal to 58 −

63 °. From this comparison, a conclusion is that the same number of particles within the gouge 

thickness (𝑛𝑏1 = 𝑡ℎ𝑖/ 𝑒𝑞) leads to similar  ’-bands and Riedel structures with the gouge. 

 
Figure 82. The solid fraction between 0.7 and 1 at steady-state for the two samples in the hyphen box in Figure 

80: (M-PS-40-Keq) (a simulation with a gouge thickness of 2mm, an equivalent cell diameter of   0 and an 

equivalent stiffness of 4.7 101  Pa/ ) and (M-Th-1) (a simulation of 1 mm thickness, with an equivalent cell 

diameter of  20 and the standard stiffness of 101  Pa/ ). They both have 50 particles within the gouge thickness. 

iv. Influence of shear modulus 

Figure 83 gathers all the simulations presented in this section in a graph of the secant shear 

modulus as a function of 𝑛𝑏1(number of particles within the gouge thickness). As previously 

presented, an increase in the global stiffness of the gouge (interparticle stiffness or size of 

particles) increases both the shear modulus and the maximum shear stress (orange and purple 

lines). The results with an augmentation of the size of particles, but with equivalent stiffness, 

almost delete the effect on shear modulus (blue line). However, a modification in the gouge 

thickness does not influence the shear modulus nor the maximum shear stress (green line). 

 
Figure 83. Secant shear modulus (𝐺𝑃𝑎) as a function of the number of particles within the gouge thickness 𝑛𝑏1 

for different values of maximum shear stress (𝑀𝑃𝑎) (colored marker). The color of arrows corresponds to the 

different parameters increased and the color of the diamonds to the maximum shear stress (𝑀𝑃𝑎). 
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Following these first results, 𝑛𝑏1, the number of particles within the gouge thickness seems 

to control the magnitude of frictional data observed (both at effective friction peak and 

steady-state), and it may influence the orientation angle of  -bands. It also controls the 

dilation and slip distance observed through dimensionless numbers 𝑛𝑌 and 𝑛𝑆𝑑.  

Moreover, the shear modulus played on Riedel kinematics inside the sample, numbers of  -

bands, Riedel structure, temporality, partially presented in Figure 83. 

4.4. Discussions 

4.4.1. The orientation angle of main Riedel bands 

In previous sections, it was observed that the orientation angle 𝛼𝑖 of low  -bands, or angle 

between the direction of shearing and the  -band, was changing with the modification of some 

 r    ’  ro er  e         e   o   ro o e   o     er       e  re  o   re       o  er       e 

orientation angle of the  -bands at steady-state.  

It is interesting to note that almost all the tested parameters have an influence on the orientation 

angle of Low Riedel bands except the angularity of the cells which does not allow to conclude 

on a significant modification. The three relevant quantities in a change of principal orientation 

angle of low  -bands at steady-state are: (a) interparticle friction, Figure 84 (a), (b) the 

geometry of the model through the number of particles within the gouge thickness 𝑛𝑏1 

previously investigated, Figure 84 (b), and (c) the shear modulus. 

a) An increment in the interparticle friction between particles drastically increases the 

orientation angle of the main Riedel bands (from the beginning of the simulation and until 

steady-state), because it is linked to the internal friction 𝜑. This is a typical result of Mohr-

Coulomb's theory [(Tchalenko, 1970), (Y. Katz et al., 2004)]. (Gu & Wong, 1994) plotted 

the evolution of Riedel angles 𝛼𝑖 as a function of effective friction and also found an 

increase in 𝛼𝑖 with the increase of internal friction angle (which is equal to 𝜇∗ with a 

cohesionless material as in this study). 

 

b) An increment in 𝑛𝑏1 also increases the orientation of the main Riedel bands, both by 

reducing the size of particles or increasing gouge thickness. This result was only partially 

discussed in the literature, in the sense that particle size evolution was found to be 

responsible for the  -band angle as well as the gouge thickness, but the link between these 

two parameters is less investigated. For an increase in the initial gouge thickness, a change 

in orientation is observed close to the boundaries, which may come from edge effects due 

to the larger sample. 

 

c) At steady-state, a change in shear modulus also has a huge influence on Riedel bands 

orientation, Figure 84 (a) orange and purple lines. A drastic decrease in Riedel orientation 

is observed with an increase in Shear modulus.  
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Figure 84. The orientation angle of  -bands at steady-state (averaged value for different  -bands), for all the 

simulations, as a function of the (a) effective friction peak 𝜇𝑝
∗ , (b) the number of particles within the gouge 

thickness 𝑛𝑏1 (i.e. thickness of the gouge divided by the size of particles). The sense of the arrow indicates the 

increase of the different parameters and the names correspond to the ones presented in the previous sections. In 

figure (a) the interparticle friction 𝜇𝑛 𝑚 evolves from left to right. 

This 𝛼𝑖 angle also evolves during the simulation before stabilizing at a steady-state. In the 

standard material (M-S), 𝛼𝑖 variation with the slip distance is not very significant (~1 − 2 °) 

and evolves similarly for each simulated material. It was not studied in the present study and 

could be been done properly at a different moment of the simulation (elastic phase, effective 
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interesting are the shapes of these Riedel bands, which are most of the time not really linear and 
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present some lower angle at the boundaries, as found by (Hirata et al., 2017). In some cases, 

the  ′-bands present within the gouge modify the structure and slip temporality. These bands 

are unfortunately complex to follow during the simulation but could be the subject of further 

study. 

(Moore et al., 1988) also worked on the kinematics of sliding and compared sliding behavior 

and internal geometry of laboratory fault zones. They observed that stick-slip samples with 

the largest stress drops also had the higher Riedel angles. On the contrary, their samples 

with low Riedel angles corresponded to stable sliding. In our case, we are not able to 

compare our results to stick-slip as defined in (Moore & Byerlee, 1992), but the Riedel 

angles observed can be correlated with friction strength and to the critical distance to reach 

a steady-state of sliding. Considering the orientation angle of the different granular materials 

observed, the smaller orientation angles could be linked to gouge stability. 

4.4.2. The combined effect of Shear modulus, number of particles in the 

gouge thickness, and interparticle friction on rheology and weakening 

mechanisms 

From previous sections, it has been shown that a reduction of Riedel angle can be both due to 

a decrease in interparticle friction or nb1, or, an increase in shear modulus. In this section, the 

objective is to look into the combined effect of a modification of the shear modulus (𝐺) with a 

different number of particles in the gouge thickness (𝑛𝑏1) and/or a variation in interparticle 

friction (𝜇𝑛 𝑚) between particles in contacts. Data were collected from sections 4.3.2 and 4.3.3 

and gathered in Figure 85 and Figure 86 trying to connect possible interactions between 

parameters and comparing Riedel-bands evolution with their distinct elastic characteristics. 

Zone (i): gouges with low G & low 𝝁 𝒖𝒎 or low     

Materials within the identified zone (i) present a reduction of interparticle friction 𝜇𝑛 𝑚 (or 

angularity via 𝑃𝑖 ) or a reduction of 𝑛𝑏1, but they have a low shear modulus similar to the one 

of the standard material (M-S) (𝐺𝑠𝑒𝑐~5.7 𝐺𝑃𝑎 and 𝐺𝑡𝑎𝑛~12.2 𝐺𝑃𝑎). A decrease in the number 

of particles within the gouge thickness (𝑛𝑏1) with stiffness modification (i.e. equivalent 

stiffness, (M-PS-Keq)) also belongs to this zone, as it is not linked to the increase in shear 

modulus, Figure 86 (e). At steady-state, these characteristics lower both the orientation angle 

𝛼𝑖 of secondary Riedels (cf. section 4.4) and the effective friction peak 𝜇𝑝
∗ .  

These mechanical changes enhance the life duration of  ’-bands in their maximum size: 

explaining why more Riedel structures are observed, Figure 85 (a) and (c), and increasing the 

critical weakening length. Materials from this zone are prone to enhance stability within the 

gouge sample but can easily go into a slip. They can be related to weak gouges behavior 

[(Collettini et al., 2019), (Bedford et al., 2022)] which are supposed to have a very small 

effective friction. 
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Figure 85. Schematic view of the previous Figure 84 (a) of the orientation of R-bands as a function of the effective 

friction peak, with distinction between 4 major zones of interest: (i) reduction of interparticle friction 𝜇𝑝
∗  or 𝑛𝑏1 

(without modification of the shear modulus), (ii) Increase in 𝜇𝑝
∗ , (iii) Decrease of 𝑛𝑏1 with increase in shear 

modulus (iv) Increase in gouge thickness. The sense of the arrow represents an augmentation of all the parameters 

previously presented as detailed within the legend. Main Riedel structure at steady-state are represented below the 

figure and corresponds to the two extreme cases of interparticle friction study (a) and (b) and of thickness study 

(c) and (d). Details on Shear modulus values can be found in Appendix 4.C. 
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Zone (ii): gouges with low G & high 𝝁 𝒖𝒎 

On the contrary, an increase in interparticle friction increases a lot the maximum shear stress, 

and thus 𝜇𝑝
∗  without changing the shear modulus. These materials lead to an increase of the 

number of Low Riedel bands within the gouge, and a higher angle of orientation at steady-state, 

Figure 85 (b). If interparticle friction and shear modulus both increased, we could expect to 

observe more numerous  -bands at friction peak and lower Riedel angle and Riedel structure 

creation during the slip weakening part. A reduction of the critical slip distance is observed, 

leading to a more sudden post-peak weakening, which is prone to switch the fault behavior from 

a ductile aseismic response to a brittle seismic slip, depending on the stiffness of the 

surrounding medium. Materials with high interparticle friction coefficient (and low stiffness) 

are also known to present greater slippage and a decrease in the recurrence time between two 

slip events (Dorostkar & Carmeliet, 2019). 

Zone (iii): gouges with high G 

As seen in the previous sections, the shear modulus increases due to an increase of interparticle 

stiffness or a decrease in the number of particles within the thickness. Materials with high shear 

modulus present a small orientation 𝛼𝑖  of  -bands. As previously found, they also present some 

Riedel structures caused by a longer life duration of  ’-bands, Figure 86 (f), and (g). It can be 

noticed that a very small interparticle friction (𝜇𝑛 𝑚 = 0.1) leads to almost the same R-angle. 

Similar values of both shear modulus   and nb1within the gouge thickness (for two different 

samples) give similar kinematics of evolution of the Riedel structures (Figure 82) but they will 

not have the same slip temporality depending on the other characteristics of the model. The 

stiffness of the fault was found to depend on the ratio of the shear modulus to the size of the 

rupture nucleation zone. A fault with a very low shear modulus (and/or large regions) is more 

likely to tend towards slow slip nucleation (J. R. Leeman et al., 2016). 

Zone (iv): gouges with low G & high     

This area is specific to an increase in the 𝑛𝑏1 number with no change in either the interparticle 

friction or the shear modulus. These materials present a large gouge thickness (20 % of the total 

fault patch) without changing the size of particles, Figure 86 (d). They are not very 

representative of reality, since an increase of the gouge necessarily induces the wear of the 

particles in the center of the sliding zone and thus tends towards a reduction of the size of certain 

particles. For these materials 𝜇𝑝
∗  slightly decreases and 𝜇𝑠𝑠

∗  have values similar to those of the 

(M-S) case, however, the orientation angle of Riedel bands increases. According to (Scholz et 

al., 1972), an accumulation of gouge layer tends to stabilize the system, and according to 

(Moore & Byerlee, 1992)'s theory, low Riedel angles also tend to stabilize the system. In our 

case, we have an increase in the orientation angle of the  -bands, which is a bit in disagreement 

with the theory, maybe due to the non-realistic material observed. These results could also be 

related to the stick-slip phenomenon by (Lyu et al., 2019) testing a variability of gouge 

thickness with different normal stress. They observe that an increase in layer thickness, (i.e. an 

augmentation of the number nb1), implied a reduction of stress drop and friction and has a 

significant effect on stick-slip. 
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Figure 86. Schematic view of the shear modulus G (𝐺𝑃𝑎) as a function of the ratio 𝑛𝑏1, with distinction between 

4 major zones of interest: (i) reduction of interparticle friction 𝜇𝑝
∗  or 𝑛𝑏1 (without modification of the shear 

modulus), previously presented in Figure 85; (iii) Decrease of 𝑛𝑏1 with increase in shear modulus (iv) Increase in 

gouge thickness, (v) Thin gouges with no Riedel formation. The sense of the arrow represents an augmentation of 

all the parameters previously presented as detailed within the legend. Main Riedel structure at steady-state are 

represented below the figure and corresponds to the extreme cases of thickness study (d), variation of particle size 

(e) and (f), and variation of interparticle stiffness (g). Details on Shear modulus values can be found in Appendix 

4.C. 

Zone (v): extremely low     

Some very thin gouges were also modeled (𝑡ℎ𝑖 = 200 𝜇 ) to avoid any Riedel formation 

Figure 86. By reducing the number of particles within the gouge thickness to a value lower than 

10-15, and for any change in other gouge characteristics, Riedel band formation is prevented. 

The maximum shear stress also increases whereas the dilation is slightly reduced, as previously 

found by (Biegel et al., 1989) for a reduction in fault gouge thickness.  

The results can also be related to the observed dilation at steady-state as a function of the ratio 
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Zone (vi): gouges with similar size of particles 

For granular samples with the same size of particles ( 𝑒𝑞 = 20𝜇 ), values confirm that an 

increase in 𝑛𝑏1 also increases the total averaged dilation at steady-state (from left to right in 

Figure 87). Similar results were found in the study of (Lyu et al., 2019) for different normal 

stress. But an increase in gouge thickness (green line) seems to show a stabilization of dilation 

for a large ratio 𝑛𝑏1 > 100. 

Zone (vii): gouges with a decrease in size of particles 

A decrease in particle size remains the most important factor in reducing granular samples 

dilation. A higher size of particles may also rise the amount of slip needed to weaken the fault. 

However, if the dilation is expressed as a dimensionless number, similar dilation is found for 

each material (Section 4.3.3). Markers in this zone also correlate with a reduction in Riedel 

angle orientation. 

 

Figure 87. Averaged dilation at steady state, as a function of the number of particles within the gouge thickness 

for all the simulations. Zone (v), is a zone where the thickness of the gouge is too small (𝑡ℎ𝑖 = 200𝜇 ) to present 

any Riedel band formation (even with the same parameter variation than previously described), zone (vi) is a zone 

where all the simulation have the same size of particles ( 𝑒𝑞 = 20𝜇 ) (vii) is a zone where a change in the size 

of particles is observed. The secant shear modulus at 40% of the maximum shear stress is calculated for all cases 

and plotted as colors corresponding to the color bar on the right-hand side. The standard case M-S is situated on 

the graph. 

These simulations represent different behaviors that can occur within the gouge during a 

fault slip for different types of materials. For example, although it is not possible in our 

numerical code to represent grain fragmentation, the variation in particle size and the ratio 

of the number of particles in the thickness of the gouge, gives us a glimpse of the changes 

that fragmentation could have on the sliding behavior. (Kenigsberg et al., 2020) found that 

“  e    er      e wee   o  e  o  o    o      r      d   e r e     ed  o      o  

elucidates the importance of these factors in governing the elastic and mechanical properties 
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o         ” W    o r         o    we      ed   e  ro  e       e o  er d re   o   o   der    d 

the effects of a change in the mechanical property of the gouge on its shear and sliding 

behavior. But the main conclusion remains the importance of a co-evolution between 

mechanical and elastic gouge properties from one side, and kinematics of shearing from the 

other side. 

4.5. Conclusion of Part A 

Another 2D granular fault gouge model has been implemented in the framework of DEM in 

order to study the influence of matrix particles characteristics on the fault rheological behavior 

and Riedel bands evolution. This chapter first gave an overview of a wide range of Riedel bands 

kinematics for different gouge parameters. For a highly dense granular matrix, small variations 

in physical or numerical characteristics of the model change the kinematics of the gouge: 

- Gouge materials with high interparticle friction present an increase in the effective friction 

peak (typical results from Mohr-Coulomb theory). This high friction also influences shear 

bands formation with two main consequences: low-angle Riedel bands R are mostly 

observed (few or no conjugate Riedels) and their number increases within the gouge. 

Conversely, for materials with low interparticle friction, Riedel structures are formed 

accompanied by: a reduction of 𝛼𝑖 and the formation of a single low-angle Riedel linked to 

the Y slip localization by conjugated Riedel bands. A modification in shape angularity and 

disorder have the same consequences, but with less amplitude of variation. As the 

orientation angle of Riedels can be seen as an indicator of stability for granular fault gouge 

(Moore & Byerlee, 1992), the reduction in interparticle friction is prone to switch fault 

gouge behavior from sudden and seismic slip to moderate and slow slip. 

 

- Some parameters appear to modify the global stiffness of gouge materials by increasing the 

interparticle stiffness or the size of particles, leading to a rise of the shear modulus. A higher 

shear modulus is mainly responsible for a higher number of conjugate Riedels and Riedel 

structures observed: they inhibit the formation of low R-bands and slow down the arrival of 

the steady-state of the system. Even if the orientation angle of Riedel bands is mainly 

affected by a change in the ratio between the size of gouge thickness and size of particles, 

it is also influenced by the shear modulus. 

 

- The direct consequence of an increase in the size of particles, without the stiffness effect, is 

a longer peak duration, meaning that more energy is needed to deform the gouge and to 

reach a steady state of sliding. The size of particles does not change the shape of the Riedel 

structure observed but changes the temporality of their formation and evolution, particularly 

the duration of the slip weakening part. But it also means that a longer and smoother slip 

weakening decreases the probability of instabilities to occur. 

 

- For all the simulation campaigns, three main quantities are relevant in the formation and 

evolution of Riedel bands and main stability of the granular gouge: (a) the bulk shear 

modulus, (b) the ratio of gouge thickness to grain size (i.e. number of particles within the 

gouge thickness), and (c) the interparticle friction. They all participate in a modification in 
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the orientation angle of Riedel bands and the entire Riedel structure, having a strong impact 

on gouge stability. The combined effects of these three parameters lead to different gouge 

materials more or less likely to generate stable or unstable slips. 

Studies from next part B are dedicated to a mixture between hexagonal cells with angular grains 

representing cataclastic clasts surrounded by matrix particles (i.e. hexagonal cells). Different 

results are expected in terms of Riedel patterns as the internal structure will be less 

homogeneous.  
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Part B – Granular fault zone with a composite 

mixture of angular grains and matrix particles 

4.6. Foreword 

The objective of this section is to properly study the influence of matrix particles within a 

granular sample by combining the matrix previously studied with angular grains used in 

Chapter 3, Figure 88. The first section 4.7 presents the granular material with a composite 

mixture between matrix particles and angular grains. In the second section 4.8, a qualitative 

comparison is made between the kinematics and rheology of this composite mixture under 

shearing and previous gouge samples. 

 

Figure 88. Main schema of Chapter 4, Part B 

4.7. Model and numerical framework of a composite mixture 

4.7.1. Generation of the gouge sample 

A new granular sample with both angular particles and matrix particles is created. For the sake 

of simplicity and to easily compare results with previous parts, the model of Chapter 3 with 

angular grains is partly reused. This granular sample presents a gouge already sheared with a 

fractal distribution of particles settled to 𝐷 = 2.6. To create the new composite mixture, the 

granular sample generated in Chapter 3 is kept, and a certain amount of the smallest angular 

grains is replaced by matrix particles. The first step consists in removing a certain percentage 

of the smallest particles within the selected sample, Figure 89 (a). In a second time, this material 

(a) is merged within matrix particles sample (M-S) to form the new composite mixture, Figure 
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89 (b). Due to the fractal distribution of particles within the granular sample, the composite 

mixture has a non-homogeneous particles distribution. 

 

Figure 89. (a) Granular material from Chapter 3 with a certain number of small particles removed, (b) Mixture 

between angular particles and matrix particles.  

The ratio between the area of matrix particles and the area of angular particles gives the surface 

percentage of matrix particles within the sample 𝑃𝑚𝑎𝑡𝑟𝑖𝑥: 

𝑃𝑚𝑎𝑡𝑟𝑖𝑥 =
 𝑚𝑎𝑡𝑟𝑖𝑥−𝑒𝑞 𝑖𝑣

 𝑚𝑎𝑡𝑟𝑖𝑥−𝑒𝑞 𝑖𝑣 +  𝑔𝑟𝑎𝑖𝑛𝑠−𝑒𝑞 𝑖𝑣
= 1 − 𝑃𝑔𝑟𝑎𝑖𝑛𝑠 (4.2) 

With  𝑚𝑎𝑡𝑟𝑖𝑥−𝑒𝑞 𝑖𝑣 the equivalent area of the sum of all matrix particles,  𝑔𝑟𝑎𝑖𝑛𝑠−𝑒𝑞 𝑖𝑣 the 

equivalent area of the sum of all angular clasts particles, 𝑃𝑔𝑟𝑎𝑖𝑛𝑠 the percentage of clasts 

particles. The inverse Cumulative Distribution Function (1-CDF) is plotted for 7 composite 

samples (MG-i), with varying matrix percentages (𝑃𝑚𝑎𝑡𝑟𝑖𝑥) between 29 % and 60 % (MG for 

“   r  - r    ”      e    d “ ”  or   e  er e    e o     r     r    e    Figure 90. 

From this preliminary study, only two of those samples are selected for direct shear simulations: 

(MG-33) 33 %, and (MG-56) 56 % of matrix particles. The behavior of the two selected 

samples (MG-33) and (MG-56) is then compared with a case with only granular particles (G-

C-4), and with 𝑃𝑐𝑒𝑚 = 4 % (its behavior was similar to a case with no cementation in Chapter 

3) and with a sample with only matrix particles (M-S), standard case simulation from Chapter 

4 (Part A), considered with 𝑃𝑚𝑎𝑡𝑟𝑖𝑥 = 100 % and no angular particles. 

In the two samples with only one kind of particles, the amount of initial porosity is 

measured: 𝑃𝑝𝑜𝑟𝑒 = 11 % for (G-C-4) and less than 1 % for (M-S). Samples with a composite 

     re do  o   re e        oro          e r          o     r   o        e “ er       e ”  e ween 

matrix and angular particles removes any porosity initially present. There is, in fact, about as 

much porosity as in the matrix samples. This conceptualization was chosen to fit with 

cementation cases observed in literature where cementation can lead to nearly zero porosity 

(Molenaar et al., 2007). The main characteristics of the four samples are gathered in Table 8. 

(a)

(b)
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Figure 90. (1-CDF), with CDF the Cumulative Distributive Function, as a function of the equivalent diameter of 

particles in mm, for different surface percentages of matrix particles (29 to 60 %). Samples are named from (MG-

29) to (MG-60). Note that the remaining composite mixtures not used in this study are available for an extended 

analysis on this topic. 

 

Table 8. Information on the samples used for direct simulations and compared in this section.  
𝑃𝑚𝑎𝑡𝑟𝑖𝑥 is the surface percentage of matrix particles, 𝜇𝑛 𝑚 is the numerical interparticle friction, 𝑃𝑝𝑜𝑟𝑒 is the surface 

percentage of initial porosity within gouge samples,  𝑒𝑞−𝑚𝑎𝑡𝑟𝑖𝑥  is the equivalent diameter of matrix cells, 

 𝑒𝑞−𝑔𝑟𝑎𝑖𝑛𝑠 is the equivalent diameter of grains,  𝑔𝑟𝑎𝑖𝑛𝑠  is the total number of angular grains and  𝑚𝑎𝑡𝑟𝑖𝑥  is the 

total number of matrix cells. 

Samples 

name 
𝑃𝑚𝑎𝑡𝑟𝑖𝑥 𝜇𝑛 𝑚 𝑃𝑝𝑜𝑟𝑒  𝑒𝑞−𝑚𝑎𝑡𝑟𝑖𝑥  𝑒𝑞−𝑔𝑟𝑎𝑖𝑛𝑠  𝑔𝑟𝑎𝑖𝑛𝑠  𝑚𝑎𝑡𝑟𝑖𝑥 

G-C-4 0 % 0.5 11 % - 28 −  226 𝜇  4960 - 

MG-33 33 % 0.3 0 % 20 𝜇  48 −  226 𝜇  4149 34097 

MG-56 56 % 0.3 0 % 20 𝜇  79 −  226 𝜇  1852 56571 

M-S 100 % 0.3 < 1 % 20 𝜇  - - 115825 

 

4.7.2. Numerical setup for direct shear modeling 

Apart from the shapes and sizes of the grains, the model used in this section is the same direct 

shear model as in Part A. Interparticle friction 𝜇𝑛 𝑚 is equal to 0.3 between each particle 

(matrix-matrix, matrix-grains, and grains-grains).  

To avoid wall-slip effects with smooth boundaries, a certain cohesion is introduced at the 

interface between matrix and rock walls and between angular grains and rock walls (500 𝑀𝑃𝑎). 

It enables the creation of a certain roughness by cementing particles to the top and bottom layer.  

All the other physical and geometrical parameters are identical to those used for Part A, but for 

the sake of clarity the numerical setup and properties are gathered in Table 9 below. 

  

Equivalent diameter  𝒆 (mm) 

Matrix 
particles

Angular
particles

𝑃𝑚𝑎𝑡𝑟𝑖𝑥
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Table 9. Numerical setup and properties for the composite gouge simulation. 

Property Associated variable Value 

Normal stress 𝜎𝑁 40 𝑀𝑃𝑎 

Shear velocity V 1  /𝑠 

Rock density 𝜌𝑟 2600 𝑘𝑔/ 3 

Contact stiffness 𝑘𝑛 & 𝑘𝑡 101  𝑃𝑎/  

Interparticle friction 𝜇𝑛 𝑚 0.3 

Interparticle cohesion 𝐶𝑛 𝑚 500 𝑀𝑃𝑎 at boundaries 

Sample size 𝑡ℎ𝑖 x 𝐿𝑔
 
 2 x 20    

Particle equivalent diameter  𝑒𝑞  20 𝜇  

Number of particles    varying 

DEM time step Δ𝑡 10−10 s 

Proximity updating period Δ𝑡−𝑐𝑜𝑛𝑡𝑎𝑐𝑡 10− s 

4.8. Rheology of the composite mixture 

4.8.1. Mechanics and Kinematics 

Effective friction 

The addition of some matrix particles within the initial sample (G-C-4) densifies the sample by 

removing the initial porosity. The effective friction peak observed in Figure 91 (b) is much 

higher for the two composite mixtures compared to both 0 % (G-C-4) and 100 % (M-S) matrix 

samples where some porosity is observed (respectively 𝑃𝑝𝑜𝑟𝑒 = 11 % and ~1 %). The effect 

of initial porosity (or increase in initial density) on effective friction is in adequation with our 

previous Chapter 3 and with literature (Taylor, 1948). In their study, (McBeck et al., 2019) 

confirm numerically that an increase in the initial porosity tends to reduce the maximum failure 

stress or peak of effective friction. Although the initial porosity of the granular gouge is a key 

parameter it needs to be combined with gouge fabric. Indeed, an augmentation of the percentage 

of matrix particles reduces this effective friction peak (from MG-33 to M-S). The insertion of 

matrix particle corresponds to a reduction of the broader grain size distribution (that strengthens 

the gouge), weakening the gouge for the same reason of increasing particles of similar sizes 

(i.e. reducing the fractal dimension D), as observed by [(Sammis et al., 1987), (Morgan & 

Boettcher, 1999)]. 

As usual, the steady-    e e  e    e  r    o    er  ed      e “    e  ” zo e       o         r 

with the four different samples (𝜇𝑆𝑆
∗ ≈ 0.5). But minor differences can be discerned for the 

sample without matrix with 𝜇𝑆𝑆−(𝐺−𝐶− )
∗ > 𝜇𝑆𝑆−(𝑀−𝑆)

∗ , because the interparticle friction used 

within the model from Chapter 3 is slightly higher than the one used in this chapter 

(𝜇𝑛 𝑚−(𝐺−𝐶− )
 = 0.5 > 𝜇𝑛 𝑚−(𝑀−𝑆)

 = 0.3). The augmentation of matrix particles also lowers 

the steady-state friction from 0.54 to 0.40 from the sample (MG-33) to (M-S). It is consistent 

with the change of particles shapes present within the sample (reduction of broad particles with 

angularities and augmentation of small hexagonal particles). 

The (MG-33) sample presents a higher number of angular particles and a non-homogeneous 

particle size distribution within the sample enhancing again the shearing resistance. 
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Figure 91. (a) Effective friction 𝜇∗ as a function of slip distance (𝜇 ) for the different surface percentages of 

matrix particles (P    ix = 0, 33, 56 & 100 %) respectively corresponding to samples (G-C-4), (MG-33), (MG-

56) and (M-S). (b) Peak of effective friction as a function of the percentage of matrix particles (triangles) and 

averaged value for the steady-state zone (diamonds). Sample (G-C-4) also has a different initial thickness of 

1.7   , as opposed to 2    for the other cases and a different interparticle friction 𝜇𝑛 𝑚 = 0.5. 

Homogeneity and dilation 

The elastic part of the effective friction curve is similar for a percentage of matrix particles of 

0 % (G-C-4) or 100 % (M-S), which are composed of only one sort of particle, whereas the 

two samples with composite mixture have a similar elastic part too. This evolution in the early 

beginning of the friction curve is mostly due to the initial presence of porosity which modifies 

the shear modulus and global rigidity of the gouge.  

In terms of dilation, the more matrix particle is added, the less dilation is observed (Figure 92), 

which seems logical because the shape of the matrix particles (hexagonal) allows less expansion 

than angular grains. The (G-C-4) sample expands a lot because the whole gouge localizes the 

shear (Chapter 3), which is consistent with a high fractal dimension (Morgan & Boettcher, 

1999).  

On the other hand, in the material with only matrix (M-S), smaller cells imply finer 

displacement of particles and localization in the form of R-bands. The two inhomogeneous 

materials (MG-33) and (MG-56) are a composition of these two behaviors, with progressive 

decrease of dilation (at steady state). 
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Figure 92. Dilation 휀𝑦−𝑆𝑆 and void ratio 𝐹𝑣−𝑆𝑆  (porosity) at steady state as a function of the matrix percentage 

𝑃𝑚𝑎𝑡𝑟𝑖𝑥 within the gouge. (Dilation curves in Appendix 4.D) 

Riedel bands formation and evolution 

As described in the previous Part A, it is possible to study Riedel band formation and evolution 

thanks to the evolution of solid fraction with shearing. For material (𝑀𝐺 − 33), Riedel bands 

form before friction peak (as for (M-S) sample in previous Part A). Letters A to D, Figure 93 

(a), refer to different states of the gouge with slip distance. The observed behavior is a mix 

between the sample used in Chapter 3 (with angular particles and cementation) and Chapter 4, 

part A (with matrix particles only): 

(i) From the beginning of shearing and until effective friction peak (images A to B), the 

observed kinematic behavior is comparable to the one observed with 100 % matrix 

particles (M-S), where small Riedel bands progressively form. The granular sample 

behaves as a very dense packing. 

(ii) During the weakening part (images B to D), the gouge rheology evolves and R-bands 

are less homogeneous. Two secondary R-bands ( 1 and  2) tend to concentrate the total 

kinematic deformation but they do not reach the boundary shears. 

(iii) At the end of the weakening part (images D to the end), in contrast with the behavior 

observed for (M-S), the R-bands disappear in favor of a global shear zone (Y) at the 

center of the composite mixture. This behavior is very close to the one observed for the 

cemented model with less than 75 % of cementation (Chapter 3), except that the shear 

zone is localized in the middle zone of the granular gouge. Agglomerates of particles 

are also observed. An explanation is that the Y-band cannot be formed because of the 

lack of R-bands, interrupted by the presence here and there of large unbreakable grains. 

The only way to shear the gouge is not by localization, but by shearing in the mass of 

the sample, thus necessarily by localizing on a thicker band. Normally, from an 

energetic point of view, the system always goes towards the solution that is the least 

costly. Here, there is no "easy" solution because each beginning of the previously 

formed R-band collides with some very large and rigid angular grains on their trajectory. 

The system is thus obliged to use the most expensive solution which consists in 
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expanding the whole sample. So necessarily there is more energy spent and a higher 

friction coefficient at the peak as observed in Figure 91. By increasing the percentage 

of matrix particles, we tend towards a system less expensive energetically, and the small 

matrix particles also result in reducing fault resistance, lowering magnitudes of 

coseismic slip, (Fournier & Morgan, 2012). 

 
Figure 93. Solid fraction snapshots for the sample with 𝑃𝑚𝑎𝑡𝑟𝑖𝑥 = 33 %, (𝑀𝐺 − 33). Letters correspond to 

different steps in the effective friction curve, from A to D, the beginning of the plateau zone. The solid fraction is 

plotted between 0.7 and 1. 

4.8.2. Influence of fabric and ratio of matrix to angular grains 

Qualitative comparison between the different models 

Although porosity reduction is commonly recognized to have a dominant effect on the 

mechanical and elastic properties of sediments and other granular materials [(Schöpfer et al., 

2009), (McBeck et al., 2019), (Casas et al., 2022)], the proportion of matrix, or conversely the 

proportion of clasts into the matrix can also have a non-negligible effect on kinematics and 

shear strength of granular materials. Considering previous results of section 4.8.1, and in order 

to compare results with a different distribution of Matrix-Grains particle, another granular 

sample with the same characteristics as (M-S) was modeled. This is a bi-disperse mixture with 
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the addition of 50 angular particles homogeneously distributed within the matrix model. The 

sample is called (MG-H-86), Table 10 and Figure 94. 

In this section, we not only consider two particle sizes (matrix vs grains), but also different 

particle shapes (angular vs hexagonal) and different granular distributions (fractal distribution 

vs homogeneous distribution), meaning that we can only conclude on global tendency and 

qualitative comparisons. These are preliminary results and more experiments need to be done 

in order to analyze in detail the full parametric space of this sort of simulation.  

 
Figure 94. New sample MG-H-86 with a bi-disperse mixture between matrix particles and 50 angular grains 

homogeneously distributed and of the same equivalent diameter ( 𝑒𝑞 = 315 𝜇 ). (MG-H-86, for Matrix-Grains 

sample with Homogeneous distribution and 86% of matrix particles) 

Table 10. Information on the sample with 50 angular particles surrounded by matrix particles. The name MG-H-

86 comes from   e ‘  ’    r  - r          e  ‘ ’  or  o o e eo   d   r     o     d ‘  ’  or        e w       

% of matrix particles. 𝑃𝑚𝑎𝑡𝑟𝑖𝑥  is the surface percentage of matrix particles, 𝜇𝑛 𝑚 is the numerical interparticle 

friction,  𝑒𝑞−𝑚𝑎𝑡𝑟𝑖𝑥 is the equivalent diameter of matrix cells,  𝑒𝑞−𝑔𝑟𝑎𝑖𝑛𝑠 is the equivalent diameter of grains, 

 𝑔𝑟𝑎𝑖𝑛𝑠 is the total number of angular grains and  𝑚𝑎𝑡𝑟𝑖𝑥  is the total number of matrix cells. 

Sample name 𝑃𝑚𝑎𝑡𝑟𝑖𝑥 𝜇𝑛 𝑚  𝑒𝑞−𝑚𝑎𝑡𝑟𝑖𝑥  𝑒𝑞−𝑔𝑟𝑎𝑖𝑛𝑠  𝑔𝑟𝑎𝑖𝑛𝑠  𝑚𝑎𝑡𝑟𝑖𝑥 

MG-H-86 86 % 0.3 20 𝜇  315 𝜇  50 104 274 

Shear modulus 

The combined evolution of maximum shear stress and shear modulus is displayed as a function 

of the percentage of matrix particles, for all samples from Part B, Figure 95. Matrix percentage 

modifies the elastic properties of the gouge, which is both logical and an artifact of our 

simulation: materials with larger grains present fewer sites of elastic accommodation, and the 

sample is automatically stiffer with more clasts. On the other hand, the material with only 

angular grains (G-C-4) has a much less rigid behavior with a smaller shear modulus, because 

its initial porosity is much higher (𝑃𝑝𝑜𝑟𝑒 = 11 %).  

It can be observed in Figure 95 that both the maximum shear stress and the shear modulus are 

higher for the bi-disperse and composite mixtures, zone (ii), compared to samples with only 

matrix or only grains, zone (i). An augmentation of matrix content, from 33 % to 100 %, 

reduces the initial rigidity of the sample and thus the shear modulus. A gouge material with a 

high shear modulus does not present the same consequences on gouge rheology from Part A: 

although it increases the shearing resistance, the presence of large grains disturbs the initial 

mechanism and prevents the formation of a successful Riedel structure. Assuming that sample 

(MG-33) (with no initial porosity) and sample (M-S) (with less than 0.1 % of initial porosity) 

are in the same initial state of porosity, the difference between both slip behaviors is very 

important and mainly caused by the surface percentage of grains and matrix. 

An increase in matrix content weakens the gouge until material (M-S), where a minimum shear 

stress and shear modulus are observed. The ratio of matrix particles content, or any different 

type of infill particles content, needs to be identified in each granular material and has to be 
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linked with the homogeneity of particle distribution within the gouge. Although it is done for 

most Lab experiment samples, it is not obviously considered in numerical simulations where 

mostly mono-disperse representations of gouge particles are simulated. 

 
Figure 95. Maximum shear stress 𝜏𝑚𝑎𝑥 (𝑀𝑃𝑎) and Initial tangent shear modulus 𝐺𝑡𝑎𝑛  (𝐺𝑃𝑎) as a function of the 

percentage of matrix particles 𝑃𝑚𝑎𝑡𝑟𝑖𝑥  within the sample. (i) Zone with one type of granular material (only grains 

or only matrix), (ii) zone with composite granular samples (grains and matrix). 

Focus on clasts 

In Figure 96 and Figure 97, three granular samples are compared: the standard sample (M-S) 

with only matrix particles, the sample (MG-H-86) with 50 big angular particles, and the sample 

with 56 % of matrix particles and fractal distribution of angular particles (MG-56). The three 

granular materials considered here have similar initial porosity (𝑃𝑝𝑜𝑟𝑒~ 0 %) but different 

distribution and size of clasts content (angular grains). The first remark is that, whatever the 

angular grain distribution, an introduction of larger angular grains within the matrix model 

reinforces the shear strength and shear modulus. In general, the presence of large particles 

within shear bands limits the deformation observed (Marone & Scholz, 1989). The 

consequences of the addition of bigger clasts within the gouge can be separated into the three 

slip phases, Figure 96: 

A. Pre-peak phase. The composition of the granular sample and the proportion of angular 

particles within the gouge has a huge effect on the pre-peak stage. Both shear modulus 

or strength peak increase with an increase of angular particles content within the model, 

which makes the granular media much more resistant to shearing. (Wojatschke et al., 

2016) found similar results with their synthetic fault gouge mixing Clay matrix (size< 

63𝜇 ) and Clasts (size> 63𝜇 ). Moreover, the slip distance needed to reach the peak 

of effective friction is smaller when the proportion of angular particles increases.  

 

B. Weakening phase. When the effective friction peak is reached, three kinds of 

weakening are observed. In contrast with (M-S) weakening slope which is almost linear 

from 𝜇𝑝
∗  to 𝜇𝑆𝑆

∗ , the slope of material (MG-H-86) is very abrupt which suggests a more 
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sudden post-peak weakening, reducing the slip weakening distance 𝐷𝑐 from the one 

observed for (M-S). This behavior is prone to switch the fault behavior from a ductile 

aseismic response to a brittle seismic slip, (depending on the stiffness of the surrounding 

medium, which is infinite in our case). Contrarily to what we could expect, the 

weakening observed for material (MG-56), with more angular particles, does not follow 

the sudden slip-weakening of material (MG-H-86), and presents a non-linear 

weakening. The fractal distribution of particles in the gouge (MG-56) may be 

responsible for this different weakening slope. Despite the mechanical difference 

between sample (M-S) and (MG-H-86) in terms of strength peak, the rheological 

behavior at effective friction peak does not seem to be disturbed, Figure 97 (a) & (b) 

image 1. The same Riedel bands are observed for both samples. Gouge (MG-56) have 

different Riedel bands at effective friction peaks, which are more numerous and 

homogeneously distributed within the gouge, maybe due to the non-homogeneity of the 

   er             k  d o  “de  e  r    red  e work” w ere  o  r          ede     d 

manages to develop sufficiently. 

 
Figure 96. Effective friction 𝜇 

∗ as a function of slip distance (µ ) for three granular samples: (a) the standard 

gouge sample (M-S) with only matrix particles, (b) the gouge (MG-H-86), and (c) the gouge with matrix particles 

and fractal distribution of angular particles (MG-56). The three granular materials are considered to have identical 

initial porosity (𝑃𝑝𝑜𝑟𝑒  ~ 0 %). Zone A is the pre-peak zone, zone B is the weakening zone and zone C is the steady-

state zone. 

C. Steady-state zone. Steady-state effective friction tends to a similar value for the three 

gouges. Samples (M-S) and (MG-H-86) present the same two Secondary Riedels, 

meaning that in the sample (MG-H-86), the addition of big clasts is not sufficient to 

change the rheology of the gouge. However, differences are observed near clasts, 

leading to small and very localized conjugate Riedels, Figure 97 (i). The last gouge 

(MG-56) has a completely different rheology with no Riedel bands observed (as for 

MG-33 described in 4.8.1). This granular material presents agglomerates of particles 

surrounded by porosity with a clearly identified and unique shearing zone at the center 
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of the gouge. It is supposed that the shearing zone will be extended to the entire gouge 

thickness for a longer time of the experiment. These results seem consistent with those 

of (Y. Lu et al., 2017) increasing percentage of clasts contents, or (Wojatschke et al., 

2016) increasing clay content within a fault gouge mixture of clay matrix and clasts: by 

increasing clast content the development of Riedel shears is less evident. (Wojatschke 

et al., 2016) also noticed that the percentage of clasts controlled the degree of orientation 

of the strain localization. 

 
Figure 97. Riedel bands evolution through solid fraction representation (0.7 to 1) for the three different samples: 

(a) the standard sample (M-S) with only matrix particles, (b) the new sample (MG-H-86), and (c) the sample with 

matrix particles and fractal distribution of angular particles (MG-56). (i) Zoom in on the steady-state of the sample 

(MG-H-86) and (ii) zoom in on the steady-state zone of the sample (MG-56). 

The oscillations observed in the effective friction curves for samples (MG-H-86) and (MG-56) 

could look similar to oscillations from stick-slip experiments, but here they are simply due to 

variation in friction created by changing contact interactions at the interface. 
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Granular materials from type (MG-i) seem to be the most optimal configuration to increase the 

shearing resistance, and the absence of Riedel bands at steady-state reduces the possibility of 

stick-slip to happen. On the other hand, very loose material or with a low diversity of material 

(homogeneous material) will lead to break much more easily with sudden stress drop, as 

material (MG-H-86). However, these results do not consider clay materials, for example, which 

have different elastic and frictional properties that can also lead to a loss of gouge strength and 

thus a change in stability. In their studies (Collettini et al., 2009) show for example that the 

sliding behavior of rocks is weakened by the presence of phyllosilicate (talc and smectite). They 

concluded that fault weakening strongly depends on rock fabric and on the distribution of weak 

phases within a fault zone. (Kenigsberg et al., 2020) proposed that, depending on matrix or 

particle content (smectite in that paper), fabric and shear plane development also play a key role 

in the evolution of these properties with shearing. In lab experiments or real faults, 

fragmentation of particles is also observed (Marone & Scholz, 1989), decreasing the porosity 

within the sample with shearing (Kenigsberg et al., 2019). It modifies the total contact of 

particles and plays a role in fabric evolution, and so on effective friction and elastic properties, 

    e o e o       we do ’     e  ere     o  r   e     o      o   dered  

4.9. Conclusion of Part B 

Direct shear tests were conducted on the composite mixture, clearly showing that the surface 

percentages of both matrix and angular particles have a huge influence on the mechanics and 

rheology of fault gouge. The existence of angular particles or initial porosity also affects the 

shape and thickness of shear bands in the specimens. Inserting angular particles within matrix 

cells or matrix cells within a granular sample strengthens the gouge and gives different 

weakening behaviors depending on the type of particle distribution within the sample.  

− For a gouge with a small matrix percentage, the friction peak shape is sharper, and slip 

weakening is more sudden with higher stress drop, also implying the possibility to switch 

the fault behavior to a more brittle seismic slip. The high number of angular particles and 

the non-homogeneous particle size distribution within the sample enhance again the 

shearing resistance. The energy needed to weaken the fault is much higher: Riedel bands 

cannot join the rock walls and form boundary shears, leading to a deformation of the entire 

gouge thickness. 

− Inhomogeneous and fractal particle distribution seems to favor a smoother slip weakening 

than homogeneously distributed clasts.  

− The temporality of Riedel bands formation depends on the percentage of the infill matrix 

material. 

More results are needed to analyze the different behaviors observed such as a modification of 

the intrinsic deformability of matrix material, to represent clay content for example. 
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Chapter 5. From energy 

budget to simplified models, 

towards dynamic simulations 

Main foreword 

This last chapter is both a synthesis of previous chapters and an opening for the continuation of 

the thesis. Starting from the results of Chapters 3 and 4, and focusing on friction laws and 

energy budget, the objective is to define friction laws characteristic of each type of infill 

material that can be injected into a large-scale dynamic fault model. For that we will distinguish 

three completely independent parts: 

❖ Part A is a comparison of numerical frictional responses to linear slip weakening models 

from the previous models of Chapters 3 and 4. The linear slope of slip weakening, the 

associated fracture energy, and the nucleation length are extracted, compared and 

discussed. 

 

❖ Part B restarts from the results of Chapter 3 on cemented models. A new partitioning of 

breakdown energy is discussed, allowing to differentiate three energy contributions 

from Coulomb friction, dilation and cementation failure process. This representation 

allows the construction of a simplified macroscopic friction model which has the final 

objective to be injected into dynamic failure models at a higher scale. The fracture 

energy and slip behavior of the fault gouge appears to be controlled by the intensity and 

temporality of these three mechanisms. 

 

❖ Part C is built on the results of Chapter 4, Part A, and presents a Spatio-temporal analysis 

of Riedel bands activations and their implication in the global behavior of fault gouges. 

We connect the mechanical behavior inside each band to the entire gouge kinematics by 

the means of an energetic approach. 

 

This chapter will lead to two upcoming papers: 

Casas, N., Mollon, G., & Daouadji, A. (2022) Energetic study and simplified models for 

cemented granular fault gouges. (in prep) 

Casas, N., Mollon, G., & Daouadji, A. (2022) Time and space evolution of Riedel bands in a 

dense granular material, relation to the evolution of the entire gouge. (in prep) 
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Part A – Comparison to classical slip weakening 

5.1. Foreword 

In order to study more deeply the results obtained in the previous chapters (cement and matrix), 

it may be interesting to first interpret them according to a very simplified model such as the 

linear slip weakening model (Chapter 1). Thanks to this representation it is possible to extract 

the slope associated to slip weakening models, which gives information on the stability of the 

system. The rupture energy and critical nucleation length associated with each model are 

calculated to relate to the intensity of seismic events that may occur. In the first section 5.2, the 

method used to recover and compute the different parameters is explained. Section 5.3 

compares and discusses the results obtained for the different models, with a focus on the critical 

nucleation length associated with simulations and on the influence of each of the tested 

materials, section 5.3.2. This section gathers the data obtained for each simulation used during 

the Thesis work as sketched in Figure 98. 

 

Figure 98. Main schema of Chapter 5, Part A. All the data are collected from each model. 

5.2. Method and theory 

Breakdown energy 

Throughout an earthquake, energy is dissipated during fault sliding by the means of different 

mechanisms, gathered in the total energy budget ∆𝑊, the sum of a fracture energy 𝐸𝐺 , a radiated 

energy 𝐸𝑅 and a frictional energy 𝐸𝐻 (Chapter 1). In this section, the focus is made on post-

peak rupture energy called 𝐸𝐺 
 (𝐽/ 2), or Breakdown Energy, which is the potential energy 

needed to weaken the fault. It can be calculated from previous numerical results of Chapters 3 
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and 4, as the area under the friction-slip curve, corrected by subtracting the steady-state friction 

(eq. (1.11) of Chapter 1). 

Critical weakening slope 

One possibility to determine the laboratory rock failure stability is to compare the stiffness of 

the fault with its weakening rate. The objective here is thus to calculate the equivalent critical 

slope 𝐾𝑐 of the slip weakening models (Chapter 1, eq. (1.9)), for all simulation cases with 

different infill materials (cementation and matrix).  

Slip instabilities may occur if the loading stiffness of the fault K (i.e. stiffness of the loading 

system) appears to be lower than 𝐾𝑐 (𝐾𝑐 > 𝐾). Apart from being an essential parameter for 

RSF laws, 𝐾𝑐 is thus an essential quantity in terms of stability. It is expressed here in 𝐺𝑃𝑎/  

and can be extracted from each of the friction curves presented all over the manuscript, provided 

that we accept to fit a linear weakening model on the post-peak frictional response of each of 

our faults, Figure 99. The Breakdown energy 𝐸𝐺  (𝐽/ ²) is first computed as the area under the 

shear stress curve from the stress peak 𝜏𝑝 to the averaged steady-state shear stress 𝜏𝑆𝑆. The 

critical sliding distance 𝐷𝑐, is determined to obtain an energy 𝐸 = (𝜏𝑝 − 𝜏𝑠𝑠) ∗ 𝐷𝑐/2, similar 

to the 𝐸𝐺  previously calculated (yellow area, Figure 99). In Figure 99, 𝐾𝑐 fits well with the 

shape of the decreasing shear stress, but it is not as satisfactory for all the models tested 

(Appendix 5.A). 

 
Figure 99. Illustration of the two parameters previously described for the standard case M-S (Chapter 4) where the 

shear stress variation (Pa) is observed as a function of the slip distance (m). The slope K =
|𝜏𝑆𝑆

  −𝜏p
 |

𝐷𝑐
 is calculated 

to have the same energy in 𝐽/ ² for the triangle generated by the slope line than the 𝐸𝐺  (colored in yellow). 

Breakdown energy can be calculated as  EG = ∫ (𝜏 (𝑈) − 𝜏𝑠𝑠  ) 𝑑𝑈
𝐷𝑐

0
≈ (𝜏𝑝 − 𝜏𝑠𝑠) ∗

𝐷𝑐

2
. With 𝜏p the maximum 

shear stress (Pa), 𝜏   the dynamic (or steady-state) shear stress (Pa) and 𝐷𝑐 is critical slip weakening distance (m). 

Nucleation length 

Even though 𝐾𝑐 can be extracted from each model, the difficult question remains: what is the 

stiffness of the crust, and to what quantity should the critical stiffness be compared? In 

laboratory experiments, it should be the stiffness of the loading apparatus, but for numerical 

e  er  e     we do ’     e          e  o  o   der   ro   r  k   eor     e   o     o d    

stiffness 𝐾  is defined by the ratio of stress to displacement 𝐾 = 𝜏 𝑈⁄ . The fault stiffness 𝐾 is 

𝐷𝑐

𝜏𝑆𝑆

Slip distance (m)

S
h

ea
r 

st
re

ss
 𝜏

(P
a)

𝐾𝑐

𝜏𝑝

𝐸𝐺



 

 

147 Chapter 5. From energy budget to simplified models, towards dynamic simulations 

found to be proportional to the ratio 𝐺 𝐿 ⁄ , with G the shear modulus and L the length of the 

slipping fault section, meaning that the loading stiffness decreases as the slipping fault section 

increases, Figure 100 (a). 

If the slipping region is treated as an elliptical crack (Scholz, 2019), the critical nucleation 

length before instabilities can be calculated as 

𝐿𝑐 =
𝐸

2(1 − 𝜈2)𝐾𝑐

(5.1) 

With E a relevant young modulus (or equivalent elasticity modulus), 𝜈  the Poisson ratio and 𝐿𝑐 

the critical length of the slipping region. The fault is supposed to be unstable when the slipping 

fault section exceeds the critical nucleation length 𝐿𝑐. Figure 100 (b) illustrates the dynamic 

behavior observed when 𝐿𝑐 is reached.  

  e o je    e  ere     o   o    e   e “e    ”     e o  𝐿𝑐, but to observe the global trend and to 

put forward a dependence on certain gouge characteristics. The choice was made to compare 

all the results with the same Young modulus and Poisson coefficient as if the same fault rock 

material was compared. Medium values for granite material are considered, 𝐸~60 𝐺𝑃𝑎, and 

𝜈 = 0.3, with an approximative 𝐾𝑚𝑒𝑎𝑛~900 𝐺𝑃𝑎/  (considering the 20   - length gouge).

 

Figure 100. (a) A schematic figure showing the nucleation length 𝐿 on a frictional fault plane, (figure redrawn 

from (Kanamori & Brodsky, 2004)). (b) Initiation of dynamic rupture from a smooth nucleation model, (figure 

redrawn from (McLaskey, 2019)). 

5.3. Comparison between the different gouge materials 

5.3.1. Evolution of the slope of slip weakening and breakdown energy 

In this section, all the results from the previous chapters are gathered in terms of Breakdown 

energy 𝐸𝐺 , Figure 101, and linear weakening slope 𝐾𝑐, Figure 102. From a first glance at the 

results, it can be observed that the percentage of infill material, either matrix or cement (image 

(b) and (c) in each figure) has much more influence on these two quantities than the inner 

characteristics of the gouge that show a smaller difference between the extrema obtained. 
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Breakdown energy 

The observed breakdown energy  EG ranges between 1 𝑘𝐽/ ² and 10 𝑘𝐽/ ², values in the 

range to those of laboratory and seismological estimated fracture energy, ranging between 1 

𝐽/ ² and 10 MJ/ ² for minerals and rocks [(Abercrombie & Rice, 2005), (Nielsen et al., 

2016), (Scholz, 2019)]. According to (Nielsen et al., 2016) and large data set from our 

simulations, the total associated slip observed for our fault gouge would be ranged between 1 

and 10 mm. 

The evolution of breakdown energy appears to mostly depend on the ratio of infill material 

within the granular sample, Figure 101 (b) and (c), with values close to 10  𝐽/ ². While 

increasing the percentage of cementation promotes higher fracture energy, increasing the 

percentage of matrix decreases the fracture energy: a matrix percentage higher than 80 % shows 

breakdown energy around 103 𝐽/ ², as well as mid-dense and low cemented models. On the 

other hand, for dense materials (either very cemented or with a very little percentage of matrix 

particles), energies are displayed around 10  𝐽/ ², suggesting much more intense seismic 

events in case of slip initiation. Changing cells perturbation, Figure 101 (a4), does not have a 

huge influence on the total breakdown energy. However, an increase in breakdown energy is 

observed when changing the interparticle friction from 0.1 to 0.6, Figure 101 (a1), the size of 

particles from 20 to 50   , Figure 101 (a2), or even the interparticle stiffness from 101  to 

1016 𝑃𝑎/ , Figure 101 (a3). 

 

Figure 101. Evolution of the breakdown energy (𝐽/ ²) as a function of different parameters. (a) Matrix samples 

(M-…  w     o  e parameters variation: (a1) as a function of the interparticle friction 𝜇𝑛 𝑚, (a2) as a function of 

the size of particles  𝑒𝑞  (mm), (a3) as a function of the interparticle stiffness in 𝑘𝑛 (Pa/m), (a4) as a function of 

the cell perturbation 𝑃𝑖 . (b) Composite mixture between matrix and grains (MG-samples) with variation of matrix 

percentage. (c) Cemented samples (G-samples) with variation in the percentage of cement for both dense and mid-

dense samples. 
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Linear weakening slope 

Even though the inner characteristics of the gouge have more influences on the Linear 

weakening slope 𝐾𝑐, they are still negligible compared to the variation in the surface percentage 

of matrix or cement, Figure 102. In line with the results of Chapter 4, Part A, a significant 

influence of the interparticle friction coefficient and the particle size is observed on the 𝐾𝑐 

value. Increasing friction increases the inclination of the weakening slope, which enhances the 

probability of generating an instability while the increase in the size of the particles has the 

opposite effect when it is cumulated with an equivalent stiffness allowing to have a constant 

shear modulus.  

 
Figure 102. Evolution of the linear slope of weakening 𝐾𝑐  (𝐺𝑃𝑎/ ) as a function of different parameters. (a) 

Matrix samples (M-…  w     o  e parameters variation: (a1) as a function of the interparticle friction 𝜇𝑛 𝑚, (a2) 

as a function of the size of particles  𝑒𝑞  (mm), (a3) as a function of the interparticle stiffness in 𝑘𝑛 (Pa/m), (a4) 

as a function of the cell perturbation 𝑃𝑖 . (b) Composite mixture between matrix and grains (MG-samples) with 

variation of matrix percentage. (c) Cemented samples (G-samples) with variation in the percentage of cement for 

both dense and mid-dense samples. 

Shear modulus, friction, and number of particles within the gouge thickness, Figure 103 

As interparticle friction, the shear modulus, and number of particles within the gouge thickness 

selected in Chapter 4, were playing on the Riedel structure observed, they also influence 𝐸  

and 𝐾𝑐. Going back to the matrix materials dataset, a link between the breakdown energy and 

the ratio 𝑛𝑏1 is observed: a slight increase in 𝐸𝐺  is observed when decreasing 𝑛𝑏1 with the 

opposite effect on 𝐾𝑐. This increase of 𝐾𝑐, even for a low energy, can be quite penalizing, as it 

also implies a reduction of the sliding distance necessary to weaken the fault, which could tend 

to rather an unstable sliding.  

These results agree with the Riedel structure observed in Chapter 4: materials with lower 𝐾𝑐 

presented lower Riedel angles and a highly visible Riedel structure, promoting slip stability. A 

high value of initial tangent shear modulus increases both 𝐾𝑐 and 𝐸𝐺 , although its influence is 

less important than 𝑛𝑏1 or 𝜇𝑛 𝑚. 
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In the case where there is both an increase of shear modulus and a decrease in 𝑛𝑏1, the two 

effects compensate with almost no variation in both 𝐾𝑐 and 𝐸𝐺 , as observed for an increase in 

the size of particles, Figure 102 (a2). 

 
Figure 103. Evolution of the linear slope of weakening 𝐾𝑐  (𝐺𝑃𝑎/ ) as a function of (a) the interparticle friction 

𝜇𝑛 𝑚, (b) the initial tangent shear modulus 𝐺𝑡𝑎𝑛 (𝐺𝑃𝑎) and (c) 𝑛𝑏1 the ratio of gouge thickness on particle size. 

Evolution of the breakdown energy 𝐸𝐺(𝐽/ ²) as a function of (a) the interparticle friction 𝜇𝑛 𝑚, (b) the initial 

tangent shear modulus 𝐺𝑡𝑎𝑛 (𝐺𝑃𝑎) and (c) 𝑛𝑏1 the ratio of gouge thickness on particle size. Matrix samples (M-

…  w     o  e parameters variation: particle size with equivalent stiffness (dark blue circles), particle size (orange 

circles), the initial thickness of the gouge (green squares), interparticle stiffness (pink diamonds), interparticle 

friction (red hexagrams) and perturbation shape (black asterisks). Linear regression line in black.  

5.3.2. Critical nucleation length and stability consequences 

A slip within fault can become problematic when a change from slow slip to fast stick-slip is 

observed, which is mainly due to an alteration of the elastic stiffness of the crust (for crustal 

faults) or the loading apparatus (for laboratory experiments) or a change within gouge material 

properties. According to several recent studies, it has been shown that the evolution of the gouge 

fabric is of major influence in the observed slip patterns with shearing. 

Simulations from this Thesis work do not allow to conclude on the stability of the system, as 

shearing is perfectly displacement-controlled and no global stiffness is present. Although we 

cannot calculate the total nucleation length of the system, it is possible to calculate for each 

experiment a critical nucleation length from which, depending on the medium stiffness, the 

fault could switch to fast stick-slip and thus instabilities. 

The evolution of the critical nucleation length 𝐿  is computed according to the previous method 

(Section 5.2). The obtained curves, Figure 104, are directly the inverse curves of those observed 

for 𝐾 , as a direct consequence from equation (5.1). These results can then be interpreted in 

terms of instabilities and linked to higher-scale faults. 
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Figure 104. Evolution of the critical nucleation length 𝐿𝑐  (m) as a function of different parameters. (a) Matrix 

samples (M-…  w     o  e parameters variation: (a1) as a function of the interparticle friction 𝜇𝑛 𝑚, (a2) as a 

function of the size of particles  𝑒𝑞  (mm), (a3) as a function of the interparticle stiffness in 𝑘𝑛 (Pa/m), (a4) as a 

function of the cell perturbation 𝑃𝑖 . (b) Composite mixture between matrix and grains (MG-samples) with variation 

of matrix percentage. (c) Cemented samples (G-samples) with variation in the percentage of cement for both dense 

and mid-dense samples. 

The last Figure 105 presents the critical nucleation length as a function of the breakdown energy 

for each simulation. The majority of critical nucleation lengths are observed in between 0.1 and 

1 m but some off-center zones are noticed: 

(i) High 𝑳  and low 𝑬𝑮 – The mid-dense samples with nearly no cementation (𝑃𝑐𝑒𝑚 <

25 %) show a material with a large critical nucleation zone (𝐿𝑐 > 3  ) and very low 

breakdown energy (𝐸𝐺 ≤ 103 𝐽/ ²). By increasing the critical nucleation length, 

more flexibility of movement is allowed within the sliding zone before going into 

instabilities, Figure 100, leading to a less rigid fault. This implies that these materials 

are not very susceptible to become unstable. Even if instability were to occur, the 

energy released by slip would be small compared to other materials tested. These mid-

dense materials without cementation have characteristics that are rather susceptible to 

generate slow sliding. 

 

(ii) Medium 𝑳  and medium to large 𝑬𝑮 – This second zone gathers most of the samples 

studied. For 𝐸𝐺 > 103 𝐽/ ², a linear relation describes the link between the observed 

fracture energy and its associated critical nucleation length (black line). Although the 

range of observed 𝐿𝑐 is similar, the gradient of fracture energy observed is more 

important. As previously observed in section 5.3.1, higher fracture energy mostly 

corresponds to higher resisting strength of material: high cementation, a small 

percentage of matrix particles, or high interparticle friction. Increasing the size of 
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particles (top right corner) both increases the 𝐿𝑐 and the 𝐸𝐺  resulting in delaying 

earthquake nucleation. 

(iii) Low 𝑳  and high 𝑬𝑮 – In contrast, this last zone is characteristic of highly dense and 

cemented materials (𝑃𝑐𝑒𝑚 > 75 %). For a very small critical nucleation zone, there is 

not much mobility allowed for the system and more risks that the model goes into 

instability with a high-stress release. It also depends on the length of the fault which 

will add rigidity to the global model (but here all samples have the same length). As a 

difference with the ductile material presented in (i), these materials are almost brittle, 

the consequences in terms of instabilities and energy release are mostly related to this 

brittle behavior.  

The main behavior differences appear for the two extremes cemented materials observed in 

Chapter 3, which seems consistent since they represent a rather ductile behavior (mid-dense, 

with no cementation), which tends to give a rather stable sliding and its brittle opposite (dense 

and highly cemented) which tends to rapid changes of behavior, leading to a rather unstable 

sliding. Another lecture of the data is possible by looking at the linear regression lines 

corresponding to each of the four types of materials tested. The two cemented materials (dense 

and mid-dense) follow similar evolutions with a shift due to the initial porosity of the sample. 

In the same way, the two materials with matrix particles follow the same evolution with a shift 

in the nucleation length, this time due to the presence of large grains in the sample which 

decreases the critical nucleation length. Samples with matrices follow a different slope than 

those without: the presence of matrix particles changes the scaling. It would be interesting to 

compare these data with in-situ or lab experiments. 

 
Figure 105. Evolution of the critical nucleation length 𝐿𝑐  (m) as a function of the breakdown energy (𝐽/ ²) for 

different parameters. Matrix samples (M) with matrix parameters variation are colored in dark blue, (b) Matrix-

grains samples (MG) composite mixture) with a variation of surface percentage of matrix particles are colored in 

light blue. Cemented gouge samples (G) with a variation of the surface percentage of cement for both dense 

(colored in pink) and mid-dense samples (colored in red). The black line represents the linear regression of the 

data set for the selected zone. The three different zones are explained within the text. 
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Analyses could be improved by studying these same materials with the presence of water. 

Besides, in the proposed definition of 𝐿𝑐, time dependence is not considered. However, 

according to a recent study (McLaskey, 2019), 𝐿𝑐 has to be carefully used for rough and 

heterogeneous faults which need an intrinsic time dependence law such as power density (strain 

energy released per unit time per unit area). It could be another comparison to make with our 

samples. Then, there are two very important aspects that we almost didn't address here: the 

influence of normal stress (because the results presented here are only valid for 40 𝑀𝑃𝑎) and 

the gouge thickness, probably inoperative in some cases (dense and very cemented materials 

that fracture horizontally) and important in other cases (inclined Riedel of matrix cases that 

have more or less time to develop). It is obvious that a change in the applied normal stress will 

affect these parameters. It would be interesting to repeat this study for cases where the confining 

pressure is much higher, in order to judge the evolution of these parameters under such stresses. 

Even though we can compute and compare the critical nucleation lengths with literature, 

it is not possible, at this step, to say whether or not the system is stable or unstable. For 

this reason, friction laws observed need to be inserted in dynamic modeling considering 

the global stiffness of the fault and a dynamic rupture process. This is expected to be a 

natural perspective of the present thesis. 

5.4. Conclusion of Part A 

Infill materials, which are playing on gouge fabric, have a major role in the critical nucleation 

length and fracture energy released. The cementation within the gouge seems to be the most 

influent parameter tested and an initially dense cemented material will tend to a very short slip 

distance before instabilities occur (small 𝐿𝑐) as well as a high breakdown energy (high 𝐸𝐺). 

Even though they take place in a specific range of experiments (constant imposed pressure, 

constant slip velocity, and absence of water), our results raise the question of the slip weakening 

shape. It appears that only mid-dense cemented samples and some matrix samples can be easily 

modeled with the classical linear form (Appendix 5.A). Dense cemented samples display a 

bilinear decreasing shape that can be compared to a model proposed by (Abercrombie & Rice, 

2005). Exponential weakening models are used by (Sone & Shimamoto, 2009) in their high-

velocity friction experiments. Although their results cannot be directly compared with those 

presented here, the friction curve described by an exponential fit is consistent with some of our 

mid-dense cemented samples but not for dense cemented samples. A reason that could explain 

this difference is that a simple exponential weakening considers that all the physics is acting at 

the same time, which is maybe not the case for very cemented material. 

Simple slip weakening models are intended to approximate behaviors to make them more 

tractable to use for understanding fault weakening with displacement (Chapter 1). Real fracture 

is well known to be much more complex, but complex models are difficult to upscale. A balance 

must be found between a too simple and a too complex model. For this reason, we propose 

other friction and energetic laws linking local rheology and gouge mechanics in the next two 

sections. 
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Part B – Energetic study of cemented gouges: a 

way to friction laws 

5.5. Foreword 

Previous simulations from Chapter 3 show that a modification of the initial porosity (i.e. 

density), or of the cementation within the sample could induce an important change in slip 

mechanisms. In order to isolate the main mechanisms acting on fracture processes, a 

partitioning of the total macroscopic friction generated during the shearing of a granular gouge 

sample is proposed. Based on the physical content of the numerical model used, three factors 

are identified as playing a role in the total effective friction and energy partitioning:  

− The d     o  o    e  o  e  or deformation in the 𝑦-direction perpendicular to the sliding 

−   e d    e coming from the breakage of cohesive bonds due to cementation 

− The friction generated by sliding contact interactions 

These contributions will be calculated thanks to global potential energy recovered at each time 

step, from the data set presented in Chapter 3 and computations details presented in the next 

sections, Figure 106.   e o je    e o         r      o   o “re-d   o er”   e       e         

involved in fracture mechanics, but above all to be able to clearly locate and quantify these 

three mechanisms and their interaction with fault rheology. 

 

Figure 106. Main schema of Chapter 5, Part B. All the data are collected from cemented granular gouge model 

(Chapter 3). 

 

Matrix

Matrix alone

Angular grains 

& cement

Angular grains 

& matrix

Cement 

Infill material Grain sample Numerical test Analyses 

DEM with 

cohesive law

DEM with 

friction law

Gouge strength

Friction weakening

Rheology and Shear 

bands 

Friction laws

& energy budget

Simplified 

models

Slip behavior

Granular fault 

gouge

Cohesive

Cohesionless

Dynamic 

modeling ?



 

 

156 Part B – Energetic study of cemented gouges: a way to friction laws 

5.6. Decomposition of sliding friction – Method 

5.6.1. Breakdown energy partitioning 

Definition of breakdown energy 

In this section, the focus is also made on post-peak rupture energy called 𝐸𝐺 
 (𝐽/ 2), for 

Breakdown Energy, previously calculated on Part A. It is calculated from previous numerical 

results (Chapter 3), as the area under the friction-slip curve, corrected by subtracting the steady-

state effective friction value: 

EG = ∫ (𝜇∗ (𝑈) − 𝜇  
∗ )𝜎𝑁 𝑑𝑈

𝑈𝑒𝑛𝑑

𝑈𝑝

(5.2) 

With 𝜇∗(𝑈) the current effective friction, 𝑈𝑝 the 𝑥-displacement at effective friction 

peak, 𝑈𝑒𝑛𝑑 the 𝑥-displacement at the end of effective friction peak, and 𝑈 the current slip 

distance.  

   ord     o  re  o           o     d   e   ree       e                  ed      e  e e  ed 

       ode     e  o     re kdow  e er        e d   ded    o   ree e er    o  r     o    a 

dilation e er   𝐸𝐷𝑖𝑙    ked  o      e d     o    e         e er            e e er   

𝐸𝐷𝑎𝑚  o      ro    e  re k  e o   e e     o   r    re o   o e   e    k  w      r   e  re   o  

e er      d 𝐸𝑓𝑟     r  o    e  o     r    o    e er   𝐸𝑓     re e  ed    Figure 107    e remaining 

Coulomb energy 𝐸𝑓𝑟 collects all frictional energy that is not considered in   e  o         r  

𝐸𝑓𝑐 = 𝜏𝑠𝑠 ∗ 𝐷𝑝𝑝. Considering that the 𝐸𝑓𝑐 is similar to the definition of the 𝐸𝐻 part of the energy 

budget, 𝐸𝑓𝑟  o  d  e  o   red  o e  e    or   de           e     e  o   e    re   o  w    re  e   

 o   e   e d      e r  e o        e    re   o   

 

Figure 107. Proposed model (function shape strongly varies depending on cementation and initial porosity), with 

the decomposition of the breakdown energy 𝐸𝐺 . 𝐸𝐺  gathers a dilation energy 𝐸𝐷𝑖𝑙  linked to sample dilation 

(mechanical energy), a Damage energy 𝐸𝐷𝑎𝑚  coming from the breakage of cementation (surface creation energy) 

and 𝐸𝑓𝑟  a part of Coulomb energy 𝐸𝑓. 𝜏𝑝 is the maximum shear stress, 𝜏𝑠𝑠 is the steady-state shear stress, or 

dynamic shear stress. 𝐷𝑝𝑝 is the duration of the slip weakening part (post-peak), similar to the critical weakening 

distance. Coulomb energy 𝐸𝑓𝑟  collects all the Coulomb energy that is not considered in the constant part 𝐸𝑓𝑐 =

𝜏𝑠𝑠𝐷𝑝𝑝. Note that in the sketch, 𝐸  and 𝐸𝑓𝑐 are in Joule and not in J/m² as in the following equations. 

𝐷𝑝𝑝𝑈𝑝

    

𝜏𝑝

𝐸𝐺

𝜏𝑠𝑠

𝜏

𝐸𝑓 = 𝐸𝑓𝑐 + 𝐸𝑓𝑟  

𝐸𝐷𝑎𝑚

𝐸𝑓𝑐

𝐸𝐷𝑖𝑙

𝐸𝑓𝑟

+ 

+ 

𝑈𝑒𝑛𝑑
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Calculation of the different energies 

As the model does not present any radiated or heat energy consumption, it is admitted that the 

total energy of the model, to which the Coulomb friction part (𝐸𝑓𝑐) and a potential pre-peak 

part would have been subtracted, will be similar to the breakdown energy previously presented.  

The objective here is to calculate each term of the Breakdown energy contribution previously 

described, meaning the energy posterior to the effective friction peak: the dilation energy 

𝐸𝐷𝑖𝑙−𝑝𝑝, the frictional energy 𝐸𝑓−𝑝𝑝 and the Damage energy 𝐸𝐷𝑎𝑚−𝑝𝑝 (pp for post-peak). The 

total energy of the sheared gouge model 𝐸𝑡𝑜𝑡 (𝐽/ ²) is first calculated for every slip distance 

U( ) (i.e. at every time step i of the simulation), knowing the total tangential force 𝐹𝑇 acting on 

the upper rock wall (𝑥-direction):  

𝐸𝑡𝑜𝑡( ) = 𝐸𝑡𝑜𝑡( − 1) +
(𝑈( ) − 𝑈( − 1))(𝐹𝑇( ) + 𝐹𝑇( − 1))

2 𝑔

(5.3) 

The surface  𝑔 is the surface perpendicular to the applied normal stress 𝜎𝑁, due to the (2D) 

simulation, with a width of 1   with  𝑔 = 𝐿𝑔 ∗ 1  2. Parameters are shown in Figure 108. 

 
Figure 108. Schema of the model with the different parameters used. V is the shearing velocity applied on the 

upper rock wall ( /𝑠), 𝜎𝑁 is the applied normal stress on the upper rock wall (𝑀𝑃𝑎),  𝑔 is the surface 

perpendicular to the applied normal stress ( ²), 𝐿𝑔 is the gouge length (m), 𝐹𝑇 and 𝐹𝑁 are respectively the total 

tangential and normal forces acting on the upper rock wall (𝑥 −direction), (N). 

The total dilation energy 𝐸𝐷𝑖𝑙 (J/m²) is the product between the vertical distance covered by the 

upper rock wall Δ𝑡ℎ 
(the 𝑦-displacement is allowed in the model) and the total normal force 𝐹𝑁 

acting on this rock wall (y-direction): 

𝐸𝐷𝑖𝑙( ) =
Δ𝑡ℎ( )𝐹𝑁( )

 𝑔

(5.4) 

It is also possible to calculate an averaged post-peak dilation energy 𝐸𝐷𝑖𝑙−𝑎𝑣 e      o 

[𝑡ℎ𝑆𝑆 
− 𝑡ℎ𝑝] ∗ 𝜎𝑁  With 𝑡ℎ𝑆𝑆 the gouge thickness at steady-state, 𝑡ℎ𝑝 the gouge thickness at 

friction peak and 𝜎𝑁 the normal stress. 

Finally, the Damage energy 𝐸𝐷𝑎𝑚 (𝐽/ ²) is calculated considering the contact parameters of 

each particle as follows 

Sg = 0.02 m²

  

Lg = 0.02 m

𝑉

𝑥 

𝑦 
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𝐸𝐷𝑎𝑚( ) =
∑𝐿𝑝−𝑐( )

2
(
𝐶𝑛 𝑚

2
)
2 1

𝑘𝑛

1

𝐿𝑔

(5.5) 

With ∑𝐿𝑝−𝑐( ) the total contact length of contacting grains evolving during shearing, 𝐶𝑛 𝑚   e 

   er      o e  o  de  r  ed         er      d 𝑘𝑛   e    er  r    e       e  . Frictional energies 

𝐸𝑓 is the remaining energy of the model: 

𝐸𝑓 = 𝐸𝑡𝑜𝑡 − 𝐸𝐷𝑖𝑙 − 𝐸𝐷𝑎𝑚 (5.6) 

As an example, Figure 109 displays the evolution of energy released for a granular sample with 

𝑃𝑐𝑒𝑚 = 57 % (G-C-57), as a function of the slip distance. Figure 109 (a) presents the evolution 

of each energy contribution through slip distance evolution. The sum of the 3 contributing 

energies (Dilation, Damage, and Friction) gives the black curve which is the total energy 

released during the sliding (pre and post-peak), increasing with slip distance. By derivation of 

each energy term, an associated friction can be calculated, allowing to obtain the specific 

frictional contribution of each mechanism presented above, Figure 109 (b). These friction 

contributions will be used to propose simplified models in section 5.6.2. Figure 109 (c) helps 

analyze the percentage of energy consumed in pre-peak or post-peak phases, where we see for 

this sample that pre-peak energy dissipation can be neglected (although this conclusion does 

not stand for all samples). The surface percentage of cementation (presence of cohesion) 

remaining in the sample with the increasing slip distance can be observed in Figure 109 (d), it 

represents the damage observed in Chapter 3. Similar data are extracted from each experiment 

of Chapter 3, both for dense and mi-dense samples. 

 

Figure 109. Dense sample with 57 % of cementation (a) Energy budget (𝐽/ 2) as a function of slip distance (m) 

for the different contributions. (b) Effective friction 𝜇∗ extracted from energy consumption. (c) Energy budget 

(𝐽/ 2) in pre-peak and post-peak phase; (d) Cementation spent and remaining expressed as cohesive energy 

(𝐽/ 2) in the sample as a function of the slip distance (m). 

(a) (c)

(b) (d)

𝐸𝐷𝑖𝑙

𝐸𝐷𝑎𝑚

𝐸𝑓

𝐸𝑡𝑜𝑡
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5.6.2. A way to friction laws 

Now that each friction contribution has been identified and calculated, the objective is to obtain 

a simplified friction law that accounts for the three main mechanisms (dilation, friction and 

damage) and that takes as input the physical parameters of the gouge. Once this friction law is 

determined, it will be possible to simulate the mechanical and energetic behavior of any 

cemented gouge (within the framework of the hypotheses of the thesis) by simply changing the 

percentage of cementation (𝑃𝑐𝑒𝑚) present in the sample. 

Depending on the percentage of cementation and thus on the three different types of cemented 

materials previously identified in Chapter 3 (poorly cemented, cemented, and highly cemented), 

the simplified model can give the evolution of the effective friction as a function of the slip 

distance with a well-detailed slope of slip weakening. The following section explains the 

relationship between each parameter of the gouge and the steps leading to the final friction laws. 

The method aims to find a simplified model for each frictional contribution, as observed in 

Figure 109. 

Behavior laws of shape parameters 

Figure 110 (a) shows the evolution of effective friction (black curve) and its different 

contributions as a function of the slip distance, Figure 109 (b), for this granular sample: the 

green curve is the frictional or Coulomb contribution 𝜇𝑓
∗ , the dilation contribution 𝜇𝑑𝑖𝑙 

∗ appears 

in red and the damage contribution 𝜇𝑑𝑎𝑚
∗  in blue. The first step consists in selecting and 

recovering all the essential parameters from these three contributive frictions and making 

appear a global tendency of evolution for each of them. Figure 110 (b), (c), and (d) present an 

example with friction contributions and simplified models, highlighting the main parameters 

selected to reproduce a reliable empirical simplified model. These parameters evolve as a 

function of the surface percentage of cementation and initial porosity within the gouge, Figure 

111: 

− The dilation friction evolution 𝜇𝑑𝑖𝑙 
∗  is illustrated employing three parameters, Ψ𝑝 the 

maximum dilatancy angle (Rowe, 1962), 𝑈𝑑𝑝  the slip distance needed to reach the dilation 

peak, and ∆𝐻𝑑, the gain in gouge thickness at the end of the dilation phase, Figure 110 (c). 

These parameters do not follow linear laws and both poorly and ultra-cemented samples 

present constant values for Ψ𝑝 and ∆𝐻𝑑, meaning that major evolution occurs for mildly 

cemented materials, Figure 111 (a) and (c). As Ψ𝑝 is increasing with the percentage of 

cementation, the slip distance 𝑈𝑑𝑝  associated with maximum dilation is reducing, which is 

consistent with results from Chapter 3. ∆𝐻𝑑 gives the shape of the Gaussian model. Even 

though a lognormal law seemed to better fit the dilation friction contribution than a Gaussian 

law, it was not satisfactory for the total friction law. The 𝑈𝑑𝑝 is higher for mid-dense 

materials and decreases with higher cementation, Figure 111 (b). 
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Figure 110. As an example of the method, a dense sample with 30 % of cementation (G-C-30) is used. (a) Friction-

slip curve with different contributions (dilatancy in red, Coulomb in green, and damage in blue), dense sample 

with 𝑃𝑐𝑒𝑚 = 30 %. The black curve is the sum of all contributions. (b) Zoom in on the Coulomb contribution with 

simulation data in green and simplified model in dark, two behaviors are observed (B1 and B2). The interesting 

parameters are: the effective friction peak at the end of the elastic phase 𝜇𝑓𝑝
∗ , the post peak friction 𝜇𝑓𝑝𝑝

∗  and the 

characteristic distance of the exponential decay ∆𝑈𝑓. B1 corresponds to the granular sample studied with 𝜇𝑓𝑝
∗ >

𝜇𝑆𝑆
∗  and B2 is an example of the second type of behavior, observed for the 30 % mid-dense case with 𝜇𝑓𝑝

∗ ≤ 𝜇𝑆𝑆
∗ . 

(c) Zoom in on dilation contribution 𝜇𝑑𝑖𝑙
∗ , simulation data in red and simplified model in dark with: the maximum 

dilatancy angle Ψp, the slip distance corresponding to the maximum dilation 𝑈𝑑𝑝 and the gain in gouge thickness 

∆𝐻𝑑  at the end of the dilation phase. (d) Zoom in on the damage contribution 𝜇𝑑𝑎𝑚 
∗  with the characteristic distance 

of the exponential decay ∆𝑈𝑑𝑎𝑚 and the maximum friction induced by breakage of cohesive links 𝜇𝑑𝑝
∗ . It can be 

noted that k, μ𝑠𝑠
∗ , and ∆𝑈𝑓𝑝𝑝 do not depend on the cementation and are taken as constant. 

− Friction contribution 𝜇𝑓
∗  is more complex to model because two different behaviors are 

observed in Figure 110 (b), B1 and B2. The first one has a peak behavior where the effective 

friction peak 𝜇𝑓𝑝
∗  is higher than 𝜇𝑆𝑆

∗ , whereas the second one has an asymptotic behavior 

with 𝜇𝑓𝑝
∗ ≤ 𝜇𝑆𝑆

∗ , meaning no friction peak. Pushing up the cementation increases both 

Coulomb friction peak 𝜇𝑓𝑝
∗  and post-peak friction 𝜇𝑓𝑝𝑝

∗  following a linear law, Figure 111 
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(d), with a characteristic distance ∆𝑈𝑓 remaining almost constant for dense samples, and 

decreasing for mid-dense samples as a function of cementation, Figure 111 (e).      

e o    o     re   ed  o   e    e o   r    o     ode  o  er ed    or         r er d      e o  

de       o  er ed  or       o     e    or      Figure 110 (b)  

 

− Damage contribution 𝜇𝑑𝑎𝑚
∗  presents a peak 𝜇𝑑𝑝

∗  with rising linear law from 0 to 100 % 

cementation, Figure 111 (f), consistent with previous results since increasing cementation 

increased the resistance of bonded particles to shearing (Chapter 3). 

These parameters are chosen and adjusted to picture the global trend of friction contributions. 

The separation zone between the three distinct regimes described in Chapter 3 is marked by a 

vertical dotted line. The objective of these graphs is not to reproduce the exact location of 

dilation friction peak, but to model a global and consistent shape evolution from one case to 

another. For the sake of simplicity, ∆𝑈𝑓𝑝𝑝 (distance between the slip distance at 𝜇𝑓𝑝
∗  and the 

slip distance at 𝜇𝑓𝑝𝑝
∗ ), 𝑘 (the elasticity slope) and 𝜇𝑆𝑆

∗  are independent of cementation and taken 

as constant. The distance ∆𝑈𝑓𝑝𝑝 is equal to 8 µm for dense samples and 40 µ  for mid-dense 

samples. The gouge layer stiffness 𝑘 is proposed equal to 140 𝑘 /  for dense samples and to 

80 𝑘 /  for mid-dense samples. Details on the equations allowing to obtain these curves are 

presented in Appendix 5.B. 

 
Figure 111. Behavior laws of each of the 7 parameters considered in the simplified models. It can be noted that 

k, 𝜇𝑆𝑆
∗ , and ∆𝑈𝑓𝑝𝑝 do not depend on cementation and are taken as constant. (a) Maximum dilatancy angle Ψp (°), 

the difference observed between prediction and real values comes from a compromise between the friction peak 

value and a consistent friction sh  e  ro    e d       o   We   o e    "  er  e"     e o  Ψ          ow      o 

obtain a consistent shape. (b) Slip distance corresponding to the maximum dilatancy 𝑈𝑑𝑝(𝜇 ). (c) Gain in gouge 

thickness at the end of the dilatancy phase ∆𝐻𝑑(𝜇 ). (d) Peak friction at the end of the elastic phase 𝜇𝑓𝑝
∗  and post 

peak friction 𝜇𝑓𝑝𝑝
∗ . (e) Characteristic distance of the exponential decay ∆𝑈𝑓(𝜇 ). (f) Maximum friction induced 

by rupture of cementation 𝜇𝑑𝑝
∗ . Dots are experimental data derived from DEM modeling with error bars. Some are 

not aligned with numerical modeling as some peak values are difficult to identify on raw data and the error can be 

important. ∆𝐻𝑑  and ∆𝑈𝑓 do ’     e e  er  e     d          e   re  o   e e    re  ed  or   e  ode   
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Equations of each friction contribution 

    k   o   e   o      r  e er ’   w  o  er ed      e  re  o   Figure 111, it is now possible 

to propose a simplified model for each friction contribution 𝜇𝑑𝑖𝑙
∗ , 𝜇𝑓

∗  and 𝜇𝑑𝑎𝑚
∗ . 

• Dilation contribution (𝝁𝒅𝒊𝒍
∗ ). The three dilation parameters (Ψ𝑝, 𝑈𝑑𝑝  and  ∆𝐻𝑑) are 

introduced in a Gaussian-like law with maximum dilatancy friction of tan(Ψp) and a squared 

exponential decrease as a function of slip:  

𝜇𝑑𝑖𝑙
∗ (𝑈 ) = 𝑡𝑎𝑛(Ψ𝑝) ∙ 𝑒

− log(2)(
𝑈 −𝑈𝑑𝑝 

𝑈𝑑ℎ𝑎𝑙𝑓
−𝑈𝑑𝑝 

)

2

(5.7)
 

U is the current displacement of the upper rock wall and 𝑈𝑑ℎ𝑎𝑙𝑓 is the distance between 𝑈𝑑𝑝 and 

the slip distance for a half reduced dilatancy-related friction. This last parameter is determined 

by solving numerically: 

𝑈𝑑ℎ𝑎𝑙𝑓 − 𝑈𝑑𝑝 

2
∙ tan (Ψ𝑝) ∙ √

𝜋

log(2)
∙ (1 + 𝑒 𝑓 (

𝑈𝑑ℎ𝑎𝑙𝑓

𝑈𝑑ℎ𝑎𝑙𝑓 − 𝑈𝑑𝑝
∙ √log(2))) = ∆𝐻𝑑  

• Friction contribution (𝝁𝒇
∗). The Coulomb contribution is more complex due to the two 

possible behaviors B1 and B2, Figure 110. The peak behavior where the effective friction peak 

𝜇𝑓𝑝
∗  is higher than 𝜇𝑆𝑆

∗  exhibits a first linear elastic part, characterized by a stiffness 𝑘 (gouge 

layer stiffness) from 0 to 𝜇𝑓𝑝
∗ . Then friction decreases linearly until a post-peak value 

called 𝜇𝑓𝑝𝑝
∗ . Friction contribution finally diminishes exponentially until 𝜇𝑆𝑆

∗  taken equal to 0.45 

to simplify the model. Each part is modeled by a specific equation: 

𝜇𝑓− 1
∗ (𝑈 ) =

{
 
 

 
 

𝑘𝑈  
, 𝑈  

≤ 𝑈𝑓𝑝

(𝜇𝑓𝑝𝑝
∗ − 𝜇𝑓𝑝

∗ )

∆𝑈𝑓𝑝𝑝
(𝑈 − 𝑈𝑓𝑝) + 𝜇𝑓𝑝

∗ , 𝑈𝑓𝑝 ≤ 𝑈  
≤ 𝑈𝑓𝑝𝑝

𝜇𝑆𝑆
∗ + (𝜇𝑓𝑝𝑝

∗ − 𝜇𝑆𝑆
∗ ) ∙ 𝑒

− 
𝑈 −𝑈𝑓𝑝𝑝

∆𝑈𝑓 , 𝑈𝑓𝑝𝑝 ≤ 𝑈 

 (5.8) 

With ∆𝑈𝑓 a characteristic distance of the exponential decay, 𝑈𝑓𝑝 =
𝜇𝑓𝑝

∗

𝑘
 , ∆𝑈𝑓𝑝𝑝  the slip distance 

between 𝑈𝑓𝑝 and 𝑈𝑓𝑝𝑝 and 𝑈𝑓𝑝𝑝 = 𝑈𝑓𝑝 + ∆𝑈𝑓𝑝𝑝.  

The second type with 𝜇𝑓𝑝
∗ ≤ 𝜇𝑆𝑆

∗  displays the succession of an elastic part from 0 to 𝜇𝑓𝑝
∗  

followed by an asymptotic exponential behavior until 𝜇𝑆𝑆
∗ , Figure 110 (b) B2. This case is 

especially observed in mid-dense samples or for mildly cemented materials: 

𝜇𝑓− 2
∗ (𝑈 ) = {

𝑘𝑈 , 𝑈 ≤ 𝑈𝑓𝑝

𝜇𝑆𝑆
∗ + (𝜇𝑓𝑝

∗ − 𝜇𝑆𝑆
∗ ) ∙ 𝑒

− 
𝑈 −𝑈𝑓𝑝

∆𝑈𝑓 , 𝑈𝑓𝑝 ≤ 𝑈 

 (5.9) 

With 𝜇𝑓𝑝𝑝
∗ = 𝜇𝑓𝑝

∗  and 𝑈𝑓𝑝 =
𝜇𝑓𝑝

∗

𝑘
.  
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• Damage contribution (𝝁𝒅𝒂𝒎
∗ ). The last contribution is the damage, characterized by an 

absence of contribution during elastic loading, and a maximum friction peak 𝜇𝑑𝑝
∗  followed by 

an exponential decrease until 0, Figure 110 (e): 

𝜇𝑑𝑎𝑚
∗ (𝑈 ) = {

0, 𝑈 ≤ 𝑈𝑑𝑎𝑚

𝜇𝑑𝑝
∗ ∙ 𝑒

− 
𝑈 −𝑈𝑑𝑎𝑚
∆𝑈𝑑𝑎𝑚 , 𝑈𝑑𝑎𝑚 ≤ 𝑈 

 (5.10) 

With ∆𝑈𝑑𝑎𝑚, a characteristic distance of the exponential decay, and ∆𝑈𝑑𝑎𝑚 = ∆𝑈𝑓 . 

Validation of the model 

Figure 112 presents the simplified models and the initial effective friction evolution for dense 

and mid-dense samples for the three types of cemented materials.  

 
Figure 112. Mid-dense and dense granular samples – validation of simplified models. Effective friction as a 

function of the percentage of cementation. Effective friction contributions are colored (dilation in red, Coulomb 

in green, and damage in blue) and the black curve is the sum of all contributions. (a) Poorly cemented materials, 

where the observed pre-peak phase is important. (b) Cemented materials with a diminution of the pre-peak phase 

with the increase of cementation. (c) Ultra cemented materials with almost no pre-peak phase. Dashed lines 
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These six chosen cases are presented here to validate the experimental friction curves with the 

friction decomposition proposed: one case for each cemented material described in Chapter 3 

(poorly cemented, cemented and ultra- cemented) and for each type of compacted sample 

(dense and mid-dense). Despite its simplicity, the empirical model fits all the materials quite 

remarkably and can be implemented with confidence in large-scale rupture models. The mid-

dense and poorly cemented patterns are the least well represented by the model and may require 

some improvement. The rest of the models and validation are presented in Appendix 5.C. 

Considering every friction contribution 𝜇𝑑𝑖𝑙
∗ , 𝜇𝑓

∗  and 𝜇𝑑𝑎𝑚
∗ , this new model gives a simplified 

representation of the effective friction coefficient 𝜇 
∗as a function of the initial percentage of 

cementation. The proposed functional expressions and parameters evolutions of this model 

remain theoretical and might be modified or improved based on future findings, but allow to 

enrich slip-weakening laws by proposing a more general model that could be implemented in 

dynamic rupture modeling. 

5.7. Results & Discussions 

5.7.1. Breakdown energy evolution 

Thanks to the previous method, the breakdown energy  𝐸𝐺  as well as its three contributed parts 

(𝐸𝐷𝑖𝑙−𝑝𝑝,  𝐸𝑓−𝑝𝑝 and  𝐸𝐷𝑎𝑚−𝑝𝑝) are calculated with previous equations, Figure 113. As the 

energies calculated with the previous models depend on simulation data, the observed results 

are of the same order of magnitude as those observed in Chapter 3 and Part A of this chapter. 

The energetic behavior can be analyzed regarding the three distinct cemented materials 

previously identified: 

− Poorly cemented materials (𝑃𝑐𝑒𝑚 ≤ 25 %) present a low and almost constant energy release 

(although larger for denser samples) remaining relatively small compared to the two other 

cemented materials: 103 𝐽/ ² for mid-dense materials and around 3.103 𝐽/ ² for dense 

materials, Figure 113 (a) & (b). It is characteristic of the ductile trend highlighted in Chapter 

3 with progressive particle reorganization and no localized shear requiring less energy from 

the system. 

 

− For cemented materials (25 < 𝑃𝑐𝑒𝑚 < 75 %),  𝐸𝐺 is increasing with the percentage of 

cementation, characterized by the chaotic character of the gouge observed with particles 

agglomerates. These large agglomerates are a hindrance to the stabilization of the gouge 

and explain the need for more energy to reach a stabilized state. 

 

− Ultra-cemented materials (𝑃𝑐𝑒𝑚 ≥ 75 %)  display an almost constant energy released, but 

more than twice higher than for the poorly cemented materials. Due to the rather brittle 

nature of the highly cemented materials (Chapter 3), the frictional resistance strongly 

increases, which amplifies the energy required to weaken the friction to its steady-state 

value. As the critical weakening distance also decreases, a stabilization of the energy is 

reached for the highly cemented models. 
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A difference is observed between the total Energy, considering the pre-peak energy part (dashed 

lines), and the breakdown energy (full lines). For mid-dense and poorly cemented samples, the 

pre-peak part is very important and is probably caused by the early beginning of dilation due to 

the more ductile behavior of this material. On the other hand, dense and highly cemented 

samples also present higher 𝐸𝑡𝑜𝑡, the pre-peak energy is increasing with the increase of friction 

peak. (Ohnaka, 2003) re   er re ed   e   e r r    re e er   𝐸𝐺  as the sum of a fracture energy 

𝐺𝑐1 (i.e. pre-peak energy) and of   e  o     e k e er   𝐺𝑐2 re   red  or   e  re kdow   ro  

 e k   re      o re  d     r    o   W   o   𝐺𝑐1         ro k     o         o       re  e k e er   

    o    w     e  e  e  ed    e o       e      we  o  d  o     e    o  e  e     e  re  e k 

e er       or de  e  e e  ed or    r   e e  ed    er      w ere   e   jor    o    e e er      

re e  ed    er  r    o   e k   o      de or  o        re  e k e er        e  o    e er     d e     

       e   o ed    d    o   ro     de e d  o    e           re        ed o    e        e ore   e 

 rr     o    e    d     ro     d o    e  e ero e e    o    e   re       e o    e        

The grey diamonds represent the breakdown energy directly extracted from simulations. The 

dense simplified models reproduce well the energetic behavior of the cemented gouge, but 

further improvements need to be done for mid-dense and highly cemented materials, Figure 

113 (a). The difference found can be explained in three ways: (i) the shape parameters of mid-

dense simplified friction can still be improved, (ii) the original curves of mid-dense samples are 

very noisy, which explains why the energy calculated in Part A is not exactly the same as the 

one obtained with the simplified model, (iii) the steady-state value is equal for all simplified 

 ode    w ere       e   zo e   re  o   er  “   e r”  or   e re    r    o    r e      e d        

 
Figure 113. Breakdown energy 𝐸  (𝐽/ ²) coming from the different contributions as a function of the percentage 

of cementation within the gouge. (a) Mid-dense samples (b) Dense samples. 𝐸  (in black) gathers a dilation energy 

𝐸𝑑𝑖𝑙−𝑝𝑝 (in red) linked to sample dilation (mechanical energy), a Damage energy 𝐸𝑑𝑎𝑚−𝑝𝑝 (in blue) coming from 

the breakage of cohesive links (surface creation energy) and 𝐸𝑓𝑟−𝑝𝑝 (in green), a part of the total Coulomb energy 

𝐸𝑓. Dashed lines represent the sum of the breakdown energy and the pre-peak energy for each contribution. 
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EDil−pp both increases with the percentage of cementation (cohesion forces greater dilation due 

to resistance to fracture) and the initial porosity of the sample. This is consistent with previous 

results showing higher dilation for denser samples, Chapter 3. As cementation increases, both 

damage (ED  −pp) and frictional energy (Ef −pp) increase, but they are still negligible 

compared to dilation energy which represents almost 70 % to 80 % of the total energy and 

breakdown energy. Damage energy is almost independent of the initial state of porosity as the 

energy needed to break a cohesive link rather depends on the contact length and the initial 

percentage of cementation. 

Ef −pp presents a special behavior with a zero contribution for poorly cemented materials and 

a small increasing contribution for the other materials, Figure 113 (a) & (b). An interesting 

point is that this energy contribution is the only one that may lead to heat creation in the system 

(in addition or subtraction of the steady-state friction) since dilation energy is nothing but a 

mechanical work and damage energy is related to surface creation. The constant part of friction 

energy  Efc  (not considered in EG) appears to be twenty times higher than EG for the total slip 

considered here. This high difference explains why (J. Chester et al., 2005) consider that the 

Fracture energy is negligible in comparison to other energies presented in the theoretical energy 

budget, Chapter 1. However, the knowledge of EG is crucial for the understanding of the onset 

of sliding. 

5.7.2. The role of dilation energy 

Why is dilatancy so important? Dilation is assumed to be very influential in the way a fracture 

grows. [(Rice & Rudnicki, 1979), (Rice, 1983), (Caniven et al., 2021), (Aben & Brantut, 2021)] 

studied the fault-zone models where dilatancy is assumed to occur within the fault zone during 

the nucleation process (with or without fluid). In gouge or breccia materials, dilation appears 

with shearing and constitutes the basis of the well-known slip-weakening models. According 

to the theory, and in the presence of fluid, dilation has two major effects, the reduction of pore 

pressure and an increase in frictional resistance due to dilatancy hardening mechanism. As a 

result, a potential stabilization of the fault can be observed thanks to the delay or even a 

suppression of the nucleation process. 

The energy partitioning previously presented gives some additional understanding of this 

phenomenon from a micro-mechanical point of view (and without fluid). It helps to identify the 

slip stages where the dilation energy is higher and how it interacts with frictional and damage 

energy, Figure 114. Comparing the scale of each energy in Figure 113, dilation is indeed the 

most influential factor, while the other energies do not exceed 2 kJ/m². This is not a new 

observation as dilation is well understood as a primary factor influencing the energy balance in 

granular shear. 

In the representation of (Caniven et al., 2021), the expansion of dilation energy implies the 

storage of more elastic strain energy increasing the radiated energy, which may lead to fast 

earthquakes and instabilities. According to them, high roughness and asperities within the fault 

slip plane obviously reduce the contact area between the two walls, enhancing dilation and an 

important fault strength reduction with instability conditions (𝐾𝑐 > 𝐾). In our results a 
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correlation between the inner fault plane roughness and asperities, the rapidity of stress drop 

(𝐷𝑝𝑝), and the dilation energy was observed (Chapter 3 and Part A). For mid-dense materials, 

increasing the cementation increases the dilation and total breakdown energies and decreases 

the critical distance of sliding 𝐷𝑝𝑝 (i.e. increase 𝐾𝑐). 

 

Figure 114. Simplified model for each cemented material, the dashed line represents the effective friction peak. 

(a) Mid-dense samples: (a.1) Poorly cemented materials, where the observed pre-peak phase is important, (a.2) 

Cemented materials with a diminution of the pre-peak phase with the increase of cementation, (a.3) Ultra cemented 

materials with no pre-peak phase. (b) Dense samples:(b.1) poorly cemented materials with a diminution of the pre-

peak phase with the increase of cementation, (b.2) Cemented materials with a negligible pre-peak phase but an 

important influence of friction peak, (b.3) Ultra cemented materials with almost not pre-peak phase and a very 

high Coulomb friction peak.  
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Through energy observations and previous dilation results of Chapter 3, behaviors of dense 

materials can be summarized in Figure 115. The observed cohesive agglomerates formed within 

the dense cemented samples create large contact asperities within the fault plane, drastically 

enhancing the dilation energy and reducing the critical slip distance needed for the stress drop. 

These materials could enhance regular to fast earthquakes, based on the representation of 

(Caniven et al., 2021), due to its higher dilation energy that is likely to give a much higher slip 

velocity response to sliding. However, for dense and ultra-cemented samples, the contact plane 

was closer to a particle-plane asperity contact (a highly cohesive band with micro-roughness), 

the actual dilation energy is thus decreasing in comparison with cemented samples as observed 

in Figure 113 (b). This is also consistent with the global dilation/contraction ratio of the gouge 

(Caniven et al., 2021). For this cemented material, the ratio is decreasing at the end of the 

observed slip as a very contractive behavior was observed. Even though the effective friction 

peak is higher for these ultra-cemented materials, the resulting breakdown energy and, by 

deduction, the elastic energy storage is smaller than for cemented materials, probably due to 

the change of roughness created by cemented particles. In comparison, for poorly cemented 

materials, the dilation begins in the pre- e k     e               or     “ re- e k” dilation 

energy, Figure 114 (a.1) & (b.1). In this case, the system has already been set into motion before 

reaching the breaking point, leading to a drastic reduction of the breakdown energy (post-peak) 

dissipated by the system which does not need much dilation energy to slide. Frictional energy 

is also reduced (with some negative values, Appendix 5.C) as all particles slide together with 

no significant shearing resistance. The observed variation of effective friction, Figure 112 (a) 

is diffuse and oscillating as observed by (Caniven et al., 2021) for this kind of asperity contact 

leading to a rather slow sliding. 

 
Figure 115. Schematic view of the different mechanisms operating within dense materials for different surface 

percentages of cementation. Poorly cemented materials (left) have low peak strength, small breakdown energy and 

high critical nucleation length. Ultra cemented materials (right) have very high peak strength, high breakdown 

energy and a very small critical nucleation length. Cemented materials (center) have high peak strength, very high 

breakdown energy and a medium critical nucleation length. 

The recent study by (Caniven et al., 2021) is relevant to this topic, although it does not consider 

gouge material. Here the cementation adds a different mechanism that slightly modifies the 

rheological behaviors they observed. Hence, even though dilation can prevent an earthquake to 

happen (Aben & Brantut, 2021), it is also related to the unlocking of an asperity and can 
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drastically accelerate the slip when the fault is relocking. With more time, it would have been 

interesting to observe these phenomena in detail and to make similar simulations with compliant 

walls to represent locally the dilatancy changes in the model. Another perspective would be to 

study the different asperities, the agglomerates formed, due to the cementation and track their 

shape and evolution as a function of slip to be able to observe their link with the dilation energy. 

5.7.3. Double weakening shape and stress excess 

What are the mechanisms acting on the two weakening peaks? Chapter 3 showed cemented and 

ultra-cemented materials presenting a double weakening shape. In this section, another 

understanding of this double shape is brought thanks to energetic studies Figure 114 (b2) and 

(b3). 

− The first weakening period depends on both interparticle friction, cement breakage, and 

dilation, and generates high frictional contacts between the few grains which are not 

cohesive anymore. The energy generated by this first peak strongly increases with the 

cementation which reduces the number of particles that can move in relation to each other, 

and mostly corresponds to frictional contact energy, Figure 114 (b). If there was temperature 

control within the simulations we could have observed higher temperature for this slip, 

which could be able to change the fabric inside the fault and modify gouge behavior. But 

the question remains, is the first weakening important within the behavior of the fault? The 

 e r      re kdow  work       o     ed “  re   e  e  ” (Kanamori & Brodsky, 2004). This 

first weakening is important in the nucleation of the fault since it controls the initiation of 

the rupture, but its energy is, most of the time, not considered because the amount of slip 

during this high-stress stage is small so that little energy is involved. Similar results were 

found for the cemented models: the value of the peak frictional resistance is significant, 

however, its energy value is low compared to that of the second weakening.  

− The second weakening period is mainly due to dilation mechanisms and more precisely 

corresponds to the weakening part of the dilation friction. It ends with the end of the dilation 

e er     r      o  orre  o d     o   e “    e  ” zo e                  o   o        e d     o  

phenomenon that produces this weakening but rather its progressive disappearance. 

However, the existence of this second peak needs a previous dilation. This energetic 

separation in two phases adds a new key of understanding for weakening mechanisms. 

This double weakening has already been observed in shears with dynamic weakening, a first 

weakening due to mechanics and friction and a second one which can be generated by thermal 

effects. However, our models do not consider the temperature, this mechanism is purely due to 

the addition of cementation, combined with a very dense initial model.  

Recent research on the fracture process tries to understand how and to which extent the 

frictional rupture can be viewed as an ordinary fracture process [(Barras et al., 2019), (Barras 

et al., 2020), (Paglialunga et al., 2021)]. According to them, the friction scaling laws previously 

presented in Chapter 1 need to be used with care: (i) the residual stress 𝜏1 (assumed to be an 

interfacial property)     o     ed  and has been shown to depend on the external applied stress, 

on the properties of the bodies surrounding the interface, and on the rate dependence of the 

frictional behavior, (ii) the effective fracture energy Gc, calculated from crack-like theory, is 
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not representative for all the breakdown energy dissipation EG (in excess compared to Gc). This 

result could explain the two-step weakening process: sharp stress drop that takes place over a 

relatively small slip followed by a slower and longer-term process bringing the friction to its 

residual value. 

5.8. Conclusion of Part B 

This part takes up the mechanical results obtained in Chapter 3. The objective was to study the 

behavior of cemented gouges through an energetic approach as it appears that cementation was 

the most influential parameter on breakdown energy in Part A. To do so, we decomposed the 

friction and energy variables into three main mechanisms: dilation, friction between the 

particles and breakage of the cemented links. Through this decomposition, the first objective 

was to propose a simplified friction model 𝜇∗, as the sum of the three contributions: 𝜇∗ = 𝜇𝑑𝑖𝑙 
∗ +

𝜇𝑑𝑎𝑚 
∗ + 𝜇𝑓 

∗ . The advantage of this decomposition is to be able to locate the different 

mechanisms over time and see their implication in the evolution of the fault gouge. This same 

decomposition was performed from an energetic point of view, on the breakdown energy EG. 

This breakdown energy is mainly composed of the energy related to the dilation of the sample, 

which always has a preponderant role in the mechanisms of rupture and cracks propagation. 

We could observe that, according to the initial porosity of the sample or the percentage of 

cementation, the influence of the dilation is not similar and does not induce the same mechanical 

behavior. The mid-dense materials have a rather linear increase of the breakdown energy (and 

of the energy necessary to dilate the sample) whereas the behavior of the dense materials is 

more complex. Indeed, the material most likely to generate sliding instabilities appears to be 

dense cemented materials (between 25 % and 75 % cementation). The agglomerates of cohesive 

particles generated in the gouge make the fault rather heterogeneous and increase significantly 

the roughness in the fault, which enhances the dilation energy more significantly and implies a 

much higher slip velocity response. 

A double weakening was observed for dense and highly cemented material, although no 

temperature variation is present. The first weakening is a mixture of the three mechanisms 

(dilation, friction and cement breakage), but with an increase in frictional energy with the 

increase in cementation. The reduction of the number of particles in contact, coupled with the 

shear rate applied to the gouge increases the friction between particles. On the other hand, the 

observation leads to a second weakening mainly due to the decrease of dilation, which 

progressively weakens the effective friction. 

Simplified models proposed are pretty convincing about the final shape and could be adapted 

to a variable imposed stress and velocity if properly fed with additional simulations. However, 

the characterization of mid-dense cemented models could be improved because the total 

breakdown energy does not fit very well with the data observed.  



 

 

171 Chapter 5. From energy budget to simplified models, towards dynamic simulations 

Part C – Time and space evolution of R-bands in 

a dense granular material 

5.9. Foreword 

The previous Chapter 4 revealed many interesting behaviors of fault gouges, but further 

analyses can be done on Riedel bands and their link to deformation evolution and stability of 

the system, Figure 116. First of all, it is possible to observe both global and local variations of 

Riedel band activation. The orientation angle of these bands can be different depending on 

whether the observed zone is in the center of the gouge or close to rock walls (Section 5.10.1). 

Then we can wonder about the temporal and spatial evolution of sliding in the Riedel bands, 

focusing on the local variation of each band. When, where, and how does each band appear? 

(Section 5.10.2). Finally, we will investigate the role that these bands can have on the entire 

behavior of the gouge and try to connect the mechanical behavior inside each band to the entire 

gouge kinematic (Section 5.11). Section 5.11.3 is a proposed energetic interpretation composed 

by the behavior of each R and Y-band. 

 

Figure 116. The main schema of chapter 5, Part C. All the data are collected from matrix gouge models, Chapter 

4. 

 or       e re       re e  ed           r       e     d rd      e “ - ”      ed  de              er 

4). We will refer to the following R and Y-bands formed during the gouge shearing,  Figure 117, 

where we can distinguish: two kinds of low Riedel bands, the primary R-bands  3,    and    

(which appear first and grow more rapidly), the secondary R-bands  1 and  2 (which are 

persistent within the entire sliding event), and boundary shears  1 and  2 (which grow 
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progressively until steady-state).   
  represents the conjugate Riedel bands appearing during the 

slip, but are only indirectly quantified here.  

 

Figure 117. Schema of the Riedel and shear bands observed during the shearing of the M-S standard case used in 

Chapter 4. (a) Friction-Slip curve with the three different zones presented in Chapter 4 (pre-peak, weakening, 

steady-state), associated with pictures of the evolution of Riedel and boundary shear bands. (b) Name and position 

of the different types of bands, the primary R-bands  3,    and   , the secondary R-bands  1 and  2, and 

boundary shears  1 and  2.   
  represents the conjugate Riedel bands. [video of the simulation] 

5.10. Opening of R-bands 

5.10.1. Method and first results 

The objective of the proposed method is to recover precisely the time evolution of R-bands 

thanks to the opening of each shear band in real simulation time. It consists in extracting 

particles' positions from each side of a R or Y band, and deriving displacement jumps in the 

directions perpendicular and tangential to the band orientation, for different total slip values 

(i.e. different time steps). Particles A and B are two particles selected from each side of the 

band  1, Figure 118.  

The variation in the  𝑅-direction, ∆Yop n, characterizes the opening of each band and 

corresponds to the relative displacement between particle A and B through time and space. It 

remains different from the actual thickness of the R-band,  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, observed on the pictures. 

However, ∆Yop n and  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 are linked together and determining ∆Yop n is an easy way to 

understand the evolution of  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠. The method is detailed in Appendix 5.D. 
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Figure 118. (a) Snapshot of the model at steady-state, where Riedel band  1 can be observed (only half part of the 

model here). (b) Sketch of the method used to measure the Riedel band opening. We first select points on each 

side of the interested band and measure the vertical displacement perpendicular to the band direction, called 

∆Yop n = ∆𝑦𝑖 − ∆𝑦0 (for more details, see appendix 5.D). The same method is applied on the displacement in the 

band direction, ∆ 𝑠𝑙𝑖𝑝 = ∆𝑥𝑖 − ∆𝑥0. 

The horizontal and vertical displacements of each band (in the local reference frame (𝑥𝑅⃗⃗⃗⃗ , 𝑦𝑅⃗⃗⃗⃗ )) 

are spatially interpolated at different times of the simulation on each side of the band (Appendix 

5.D). The ∆Yop n is then calculated for the interpolated couples of points along each R-band. It 

can be observed that each band evolves differently from the others in terms of space and time 

(i.e. total slip distance), but they can be gathered in three groups, Figure 119 and Figure 120: 

− For Primary R-bands  3 and   , the ∆ 𝑠𝑙𝑖𝑝 (total slip within each band), and the ∆Yop n 

(total opening of each band) mostly increase before the effective friction peak of the entire 

gouge (dark blue lines). Past this point, both quantities seem to reduce until a final state in 

red. Interestingly, a reduction of ∆ 𝑠𝑙𝑖𝑝 implies a negative  𝑠𝑙𝑖𝑝 which means that grains are 

moving backward in the weakening part within these bands. The    bands, not represented 

here, evolves similarly. 

− Secondary R-bands  1 and  2 evolve differently from the primary bands. Both the ∆ 𝑠𝑙𝑖𝑝 

and the ∆Yop n increase until steady-state where they stabilize. The total slip ∆ 𝑠𝑙𝑖𝑝 

observed within the secondary R-band is almost five times higher than the one observed for 

primary bands and corresponds to the size of five particles (~100 𝜇 ). It means that 

particle sliding within these bands is more important than inside the Primary R-bands, which 

may explain their longer duration and higher importance within the entire slip. The total 
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opening ∆Yop n at the end of the shearing is twice the one of primary bands and corresponds 

to the size of two particles (~ 40 𝜇 ). 

 
Figure 119. Opening ∆Yop n ( ) and total slip ∆ 𝑠𝑙𝑖𝑝( ) of the R-bands as a function of the  𝑅- direction of the 

Riedel band for different total slips during the simulation (m), (a) for the  1 band, (b) for the  2 band, (c) for the 

 3 band, (d) for the    band. The four different bands are presented in Figure 117. 

− Y-boundary shears present interesting patterns with a slightly higher ∆ 𝑠𝑙𝑖𝑝 for  1 than for 

the other bands. This is because this is the principal shear plane and we consider the upper 

rock wall as a reference, which is moving with a constant slip velocity of 1  /𝑠. Local 

behaviors also appear on each ∆Yop n variation as a really nonlinear opening. Besides, there 

is clearly a progressive activation of Y-bands starting from the point of connection of   - 

bands: the very regular slopes appearing in figure Figure 120 (a) & (b) for ∆ 𝑠𝑙𝑖𝑝  

correspond to a characteristic deformation, which can be related to stress through Young's 

modulus, or simply mentioned as a maximum compression deformation.  1 presents two 

major slopes between the top connection points of  1 and  2 (slope of about 

1.5 %) whereas in the ∆ 𝑠𝑙𝑖𝑝 of  2 we can clearly identify four connection points of primary 

and secondary R-bands (slope of about -0.5 %). In biaxial experiments, the maximum 

principal stress was observed for a vertical shortening equal to 2% for a confining stress of 

40MPa, meaning that for both Y-bands the rupture of the material is not reached. Results 

are close to the Mohr-Coulomb rupture criterion in the vicinity of the R-band (and to the 

rupture within it). 
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For the   - bands evolution, we also suppose that the peaks or troughs observed – when the 

final value is smaller than the previous value during the simulation – correspond to a change of 

orientation of Riedel bands. Indeed, in Chapter 4, for the two secondary   – bands  1and  2, 

we remark that the orientation angle was changing at the boundaries, meaning that the  1 band 

has at least three different orientations. The proximity to rock boundaries seems to diminish the 

Riedel band angle that becomes part of the next Y-bands formed. This assumption seems 

interesting, but a validation of this theory, also mentioned in (Hirata et al., 2017), would need 

further research. 

 

Figure 120. Opening ∆Yop n ( ) and total slip ∆ 𝑠𝑙𝑖𝑝( ) of the Y-bands as a function of the  −direction of the 

gouge for different total slips during the simulation (m), (a) for the  1 band, and (b) for the  2 band. The two 

different bands are presented in Figure 117. 
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5.10.2. Time evolution of R-bands  

Opening of R-bands through time 

Thanks to the two variables ∆ 𝑜𝑝𝑒𝑛 and ∆ 𝑠𝑙𝑖𝑝, it is now possible to know the variation of each 

band in space (local evolution on the total band thickness) and time (evolution as a function of 

the total slip of the entire gouge). In order to see the evolution through time of the opening of 

each band, an average value ∆ 𝑜𝑝𝑒𝑛−𝑎𝑣 (of ∆ 𝑜𝑝𝑒𝑛) is computed on the total length of each 

band. A component of ∆ 𝑜𝑝𝑒𝑛−𝑎𝑣 represents the average opening for a specific slip distance of 

the total fault. The evolution of ∆Yop n− v (in meter), Figure 121 (b), for the relevant R and Y -

bands presented in Figure 117, gives the same trends of evolution that have been presented in 

chapter 4. The observed effective friction peak is not very sudden, and  -bands have time to 

grow between the end of the elastic part (A) and the friction peak (B) (letters are from effective 

friction curve Figure 121 (a). The three different behaviors (primary and secondary Riedels and 

Y bands) presented in the previous section are now evident. ∆Yop n− v allows to localize the 

important events in the life of the different bands and their interactions with each other: 

− Primary bands ( 3,    and   ) grow faster than secondary R-bands from A to A’. They are 

in their maximum opening just before the effective friction peak (A’ to B) and then start to 

disappear giving way to the secondary R-bands which are still opening. Their orientation 

angle is also higher (~15° for primary bands and ~11° for secondary bands). Primary bands 

 3 &    clearly present the smaller ∆ 𝑜𝑝𝑒𝑛−𝑎𝑣, confirming their less important role in the 

gouge history. In Chapter 4, we postulated that only secondary R-bands and Y-bands were 

present in the steady-state, however, this representation lets us think that although they are 

almost not visible on our previous images, primary bands are still present in the model at 

steady-state, Figure 121. 

− The effective friction peak seems to be reached when the opening of each secondary band 

( 1 and  2) exceeds the maximum opening of the primary bands. However, the maximum 

opening of secondary R-bands appears during the slip weakening phase, where the dilation 

of the gouge has reached its maximum value (grey curve). Then they slightly diminish until 

the steady-state where they stabilize. 

− Finally, the evolution of the Y-   d   or   o  d we     “      e        -  e r zo e”     

described in (Bedford & Faulkner, 2021), is quite different as they slowly grow from the 

end of the elastic part – where the still inconspicuous R-bands connect to the rock walls – 

to the steady-state, where all bands opening stabilize. While  1 tends to a ∆ 𝑜𝑝𝑒𝑛−𝑎𝑣  similar 

to secondary bands,  2 approaches the behavior of primary R-bands. This different behavior 

is probably due to the one side shearing. 

Three remarkable points indicate a change between active (i.e. visible or with high opening) 

and inactive bands (i.e. non-visible or with low opening): point B, where primary bands become 

active (friction peak), point C, where  1 become active opening more than primary Riedels 

(small friction plateau), and points E where the opening of  1 as reached the opening of  1 

(steady-state). As previously presented, high angle Riedel bands R’ exist, but they are too thin 

and too numerous to be measured and quantified with this method (Chapter 4). 
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We notice that at steady-state, the sum of each ∆ 𝑜𝑝𝑒𝑛−𝑎𝑣  is not equal to the total ∆ 𝑜𝑝𝑒𝑛 (i.e. 

dilation of the gouge), this is not surprising as the orientation of the opening of each band is 

different, which makes this addition not directly possible.  Moreover, there are certain areas of 

contracting behavior that counteract these values, and these are "averaged" values that do not 

reflect the heterogeneity of each band. 

 
Figure 121. (a) Effective friction for the standard case (M-S), letters A to E are remarkable points and changes in 

Riedel band evolution. (b) Opening of the three presented bands, ∆ 𝑜𝑝𝑒𝑛−𝑎𝑣 (m) (average value over the entire 

length of the band). The primary bands ( 3,    and   ) appear in red, the secondary bands ( 1 and  2) appear in 

bleu, and the boundary shears ( 1 and  2) appear in green. Both variables 𝜇 
∗ and ∆ 𝑜𝑝𝑒𝑛−𝑎𝑣   are presented as a 

function of the total slip distance (m) of the gouge. 

This representation of Riedel band opening is pretty new in the literature, as it is complicated 

to measure, quantify and follow R-bands through lab experiments. Moreover, the distinction 

into two kinds of R-bands (primary, secondary) is not very common but makes sense after 

analyzing the ∆Yop n evolution and images of each R-band. The R-bands evolution in the pre-

peak zone is scarcely investigated in the literature [(Marone & Scholz, 1989), (Kenigsberg et 

al., 2019), (Bedford & Faulkner, 2021)], but thanks to this representation, it is possible to see 

that these two types of bands (R and Y) start to appear just after the end of the elastic part and 

before the effective friction peak. The absence from the literature of Riedel bands within the 

pre-peak zone can firstly be explained by the fact that the effective friction peak is not very 

sudden (contrary to other studies) and allows a gradual growth of the band opening. Moreover, 

at 𝜇𝑝
∗  the  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 is not as its maximum, and it is possible that R-bands existence before the 

peak was not detected in other studies because of this low thickness, and simply neglected in 
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the rest of the study. (Kenigsberg et al., 2019) studied a Clay-rich fault gouge with different 

material characteristics which also may lead to a different evolution of R-band within the gouge 

that the one observed here. 

Opening and Riedel thickness 

As the ∆ 𝑜𝑝𝑒𝑛 does not provide the real thickness  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 of R-bands, it has been measured 

manually with the ImageJ software (Appendix 5.D), giving an overall trend similar for both 

variables. The  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 values are not very precise due to artifacts between the filter chosen 

for the solid fraction observed, image saturation, and the difficulty to measure manually such a 

small distance. The values found for  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (100 − 300𝜇 ) are consistent with values 

found in previous studies for a similar thickness of initial gouge (Marone & Scholz, 1989). A 

factor of ten was also observed between the values of ∆ 𝑜𝑝𝑒𝑛 and  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 measured on the 

images, but additional measurements on other gouges would be necessary to confirm if this 

order of magnitude is always true. We did not explore these values, but as the global trend is 

consistent with ∆ 𝑜𝑝𝑒𝑛−𝑎𝑣, it confirms that ∆ 𝑜𝑝𝑒𝑛 gives a consistent evolution of the opening 

of R-bands.  

      e  o          o  w     e    w       e      e   d   e er o     μ  (M-PS-40) were also 

carried out. The maximum opening for one band corresponds approximately to the size of one 

particle, and we do know that there is a link between the number of particles within the thickness 

and global shearing and dilatancy behavior (Chapter 4). The size of particles does not have a 

huge relative impact on the ∆ 𝑜𝑝𝑒𝑛 at steady state both on total gouge opening or secondary R-

bands opening, Figure 122 (a). For both sizes of particles, the opening of one R-band represents 

between 30-40% of the total opening of the gouge at steady-state, except for the primary bands 

that are only 15% of the total opening at steady-state, Figure 122 (b). 

 
Figure 122. (a) Opening of the total gouge ∆𝑡ℎ𝑡𝑜𝑡−𝑆𝑆 at steady state (empty circles) and opening of the secondary 

and Y-bands ∆ 𝑜𝑝𝑒𝑛−𝑆𝑆 at steady state for the two sizes of particles  20 and   0. (b) Opening ratio of the bands 

to the total gouge ∆𝑡ℎ𝑡𝑜𝑡−𝑆𝑆, for each band and for the two simulations with equivalent cells diameter of  20 and 

  0, at the steady-state (letters E from Figure 117). The blue dotted circle selects the secondary and Y -bands, 

while the green circle surrounds the Primary bands ( 2 and  3). 
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5.11. The inner mechanical behavior of R-bands: towards energetic 

models 

5.11.1. Friction into R-bands 

To link the mechanical behavior of each band and that of the entire gouge, we decided to go 

further in the understanding of both local and global mechanisms. This section briefly presents 

the first analyses and observations leading to the objective of this chapter on simplified models: 

to isolate specific laws for each R and Y-band (friction/dilatancy) and to try to relate it to the 

global behavior of the entire gouge. 

To isolate the  o     e    or o  e       d    e  de  w     r    o  ode  “Thin Bands”      o  

gouge material, with a thickness similar to the one observed in R and Y-bands. The objective of 

these TB is to simulate the mechanical behavior (friction/deformation) of a R-band within the 

gouge. The chosen thickness must be low enough to avoid any development of other inclined 

Riedel bands, but not too small to avoid an excessive increase in friction (because if it is 

narrower than a natural shear band, friction is overestimated). Previously observing that the 

thickness of a Y-band (or R-band) was composed of around 10 particles, we simulated thin 

gouges of a 10-particles thickness (similar to an initial band thickness  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠  
= 200 𝜇 ) 

with the same physical and numerical characteristics as the entire gouge, to have the local 

mechanical and kinematic behavior of one single band, Figure 123. However, the TB model is 

displacement-driven, meaning that the whole length of this gouge model slides simultaneously. 

This is not the case of the individual shear bands previously described (either R or Y) in the full 

gouge model, which develops spontaneously following complex histories, with a sliding 

distance varying along with their spatial extension at a given time. Hence, the TB model should 

be considered as an average approximation of the local behavior (i.e. at a given point) of any R 

or Y band. The friction curve and dilation of all thin bands generated can be observed in 

Appendix 5.E. 

 
Figure 123. (a) Entire gouge with Riedel bands. The Riedel thickness  𝑡ℎ𝑖

 of about 10 particles with  𝑒𝑞 = 20 𝜇 . 

(b) Simulated thin band with the same thickness as the observed  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠,  𝑡ℎ𝑖
= 200𝜇 , and sheared within 

the same conditions as the previous models. 

For the standard case (M-S), the total opening of the entire gouge, as well as the one of the thin 

bands associated with the model, is presented in Figure 124. Effective friction is obviously 

higher for the thin band presenting a thickness ten times smaller. The order of magnitude of the 
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resulting thin band opening is consistent with the ∆ 𝑜𝑝𝑒𝑛 variation of the Riedel bands found in 

the previous part (~ 2.10−  𝑡𝑜 3.10−   ). This result confirms that the thickness chosen for 

the thin gouge is appropriate and gives good hope to find some convolution between all the R-

bands and the overall behavior of the gouge. It raises two interesting questions: if the whole 

fault is concerned with the sliding of a certain number of R and Y bands, why is the maximum 

fault friction lower than that of each shear band? And why is its breakdown energy larger? 

 

Figure 124. (a) Effective friction 𝜇∗ as a function of the slip distance for the standard case (black pointed curve) 

and the associated thin gouge (blue line). (b) Opening of the gouge in the 𝑦-direction (∆ 𝑜𝑝𝑒𝑛  for the entire gouge) 

as a function of the slip distance (m) for the standard case (grey pointed curve) and the associated thin gouge (blue 

line). 

5.11.2. Trajectories and opening of R-bands 

We superimpose the Y-opening observed in Figure 124 (b) with the different dilation-sliding 

trajectories corresponding to the main R-bands and Y-bands present within the gouge (i.e. 

∆ 𝑜𝑝𝑒𝑛−𝑎𝑣 = 𝑓(∆ 𝑠𝑙𝑖𝑝)), Figure 125. It can be seen that each R-band seems to follow the initial 

slope of the thin band opening (until  𝑠𝑙𝑖𝑝 = 1 10−   ), implying a similarity in behavior and 

giving us information on when and to which point the bands participate in the global behavior. 

The Y-band has a major role in global behavior with an opening almost similar to the one of the 

thin gouge. We can add to this the evolution of the bulk deformation (grey cross) which is the 

deformation of the sheared granular flow, following the slope of the "total" opening of the 

gouge (which is the displacement of the upper rock wall in the 𝑦-direction, direction 

perpendicular to the fault gouge). (Y. Katz & Weinberger, 2005) suggested that the granular 

flow is the dominant deformation mechanism at the early stage of the movement, and 

progressively gives way to Riedel structure as the dominant mechanism of deformation. Our 
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results seem to confirm this theory but will require separating the dilation and friction from 

each mechanism to understand their role.  

To each value of slip distance from the total behavior of the gouge, we can zoom in on each Y 

and R-   d    d  ee  ow       o e      “        d” o e     w         d      e    d w         e 

   o    ed  r    o    w  “        d” e  e    e  r    o  w         d      e    he next section 

presents the results and assumptions used to link local and global behavior in order to get a 

simplified frictional model of a gouge with matrix particles from these results. 

 
Figure 125. Opening of the entire gouge [ 𝑜𝑝𝑒𝑛 = 𝑓(𝑈)] for the standard case (20 × 2   ², dashed grey line) and 

the associated thin band (20 × 0.2   ², dashed blue line), and dilation-sliding trajectories of each band 

[∆ 𝑜𝑝𝑒𝑛−𝑎𝑣 = 𝑓(∆ 𝑠𝑙𝑖𝑝)]. For (M-S) and (TB-S), U is the actual slip distance, and for the R-bands, U is the 

respective displacement within each band (called ∆ 𝑠𝑙𝑖𝑝) and total slip distance for the dashed grey line. 

5.11.3. Energetic interpretations 

Now that the mechanical behavior of each band observed in the model is known, we propose 

to gather all their contributions into a single energetic interpretation. This small exploratory part 

is also based on energetic distributions. 

Proposed method 

Based on the previously defined rupture energy, the total energy 𝐸𝑡𝑜𝑡 spent by the fault at a 

given sliding distance 𝑈 can be linked to the observed friction and the normal stress applied to 

the fault: 

𝐸𝑡𝑜𝑡 
(𝑈) = ∫ 𝜎𝑁

𝑈 

0

𝜇∗(𝑢) d𝑢 (5.11) 

It can also be written as a small increment of energy d𝐸𝑡𝑜𝑡 spent for a sliding increment d𝑢, 

such that: d𝐸𝑡𝑜𝑡 = 𝜎𝑁𝜇∗(𝑢) d𝑢, with 𝜇∗(𝑢) the current effective friction of the fault gouge for 

a current slip 𝑈 (in the 𝑥-direction of the fault), and 𝜎𝑁 the normal stress applied to the fault. 
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All these data have been exploited or calculated in Chapter 4 and Part A of this chapter so that 

they are all known. 

The objective here is to reconstruct the effective friction 𝜇∗ observed on the entire fault with 

the 𝜇𝑇 
∗  extracted from thin bands simulations. This reconstruction is done at each instant of the 

simulation, i.e. for each slip increment of the fault. 

If we start from the small energy increment of the complete fault, we can write that the small 

increment of energy spent d𝐸𝑡𝑜𝑡 is also the sum of all the incremental energies d𝐸𝑇  spent in 

the Y and R bands present within the fault integrated on the total band length, plus some possible 

energy spent in the bulk of the gouge outside of the localization sites: 

d𝐸𝑡𝑜𝑡 
(𝑈) = ∑ ∫ d𝐸𝑇 (𝑈𝑇 )d 

 

𝐿𝑇𝐵

 

𝑁𝑏𝑎𝑛𝑑𝑠

(5.12)

 

 

With  𝑏𝑎𝑛𝑑𝑠 the total number of R and Y bands selected for the model (here  1,  2,  3,   ,   , 

 1 and  2), 𝐿𝑇  the length of each band and 𝑈𝑇  the current slip inside each band. 

d𝐸𝑡𝑜𝑡 
(𝑈) = d𝐸𝑅1 

(𝑈) + d𝐸𝑅2 
(𝑈) + ⋯+ d𝐸𝑌2 

(𝑈)+d𝐸  𝑙𝑘 
(𝑈) (5.13)

 
 

For example, the spent incremental energy on  1 is  

d𝐸𝑅1 
(𝑈) = ∫ (𝜎𝑁𝜇𝑅1

∗ (𝑈𝑅1
(𝑥)) d𝑈𝑅1

(𝑥))d𝑥
 

𝐿𝑅1

 

with 𝜇𝑅1

∗ (𝑈𝑅1
(𝑥)) the current effective friction on  1 at the abscissa 𝑈𝑅1

 and d𝑈𝑅1
which is the 

incremental slip on  1 (corresponding to the previous ∆ 𝑠𝑙𝑖𝑝 calculated at each time step and 

for the different spatial locations). The d𝑈𝑅1
values come from previous calculations on each R-

band and the 𝜇𝑅1

∗ (𝑈𝑅1
) comes from the effective friction extracted from Thin Bands simulations 

presented in 5.11.1. 

First results 

Figure 126 presents the effective friction of the entire gouge as a function of the slip distance 

and the energetic contribution of each band during the shearing, represented by a colored area 

under the friction curve. When the energetic contribution of each band is summed, it is observed 

that energy is missing in the pre-peak part. This energy is considered as a bulk energy from 

internal gouge deformation. This bulk energy is mainly active before effective friction peak and 

progressively disappears as deformation localizes within the different shear bands (mainly R- 

and Y-bands). 

The energetic behavior obtained seems to be consistent with the previous results observed and 

reveals the importance of each band within the model, (numeration on Figure 126):  

i. The energetic contribution of primary bands is observed at the beginning of the friction 

curve in the pre-peak part and is small compared to other contributions. 
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ii. Then comes the energy contribution of secondary bands  1 and  2 with maximum 

energy spent just after friction peak 

iii. At the middle of the weakening part, the energetic contribution of Y-bands becomes 

dominant (both for  1 and  2) and progressively reduces and stabilizes until the steady-

state zone.  

iv. The green energetic peaks may come from contractive bulk response which is not 

considered here. Further improvement could be done on that. 

v. When the steady-state plateau is reached, the two boundary shears total all the spent 

energy of the system, suggesting that the rest of the gouge is stabilized. The secondary 

bands' activity ( 1 and  2) has died out, although they are still physically present and 

      e      e  o  e       er       e o    “     e”    d      eady state is the  1boundary 

shear. 

 

Figure 126. (a) Effective friction on the entire gouge (black curve) as a function of the slip distance. Note that the 

slip distance is expressed as a dimensionless quantity which is the ratio between the slip distance (m) under the 

size of particles (m), giving an equivalent number of particles. The energetic contribution of each band during the 

shearing is colored under the friction curve such as the legend. Zone from (i) to (v) are points of interest explained 

within the text. (b) Schema of the standard gouge (M-S) with the principal Riedels and boundary shears observed.  

Internal mechanisms 

As for Part B, it is possible to calculate the part of released energy related to the dilation of the 

gouge (dilation energy 𝐸𝐷𝑖𝑙), for the whole gouge, as well as for the different bands, Figure 127 

(a). As there is no cementation in these models, the total remaining energy is considered as 
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frictional energy 𝐸𝑓 = 𝐸𝑡𝑜𝑡 − 𝐸𝐷𝑖𝑙, Figure 127 (b). Contrary to the behavior observed for 

cemented materials there is first a dilation contribution and then a frictional contact 

contribution. This seems logical as the very dense matrix gouge first dilates and as dilation 

decreases, frictional contacts are enhanced. As mentioned above, it is possible that areas of 

contraction, not considered here, can compensate for the excess energy caused by the expansion 

of the  1 and  2 bands observed, Figure 127 (a) zone i. 

 
Figure 127. (a) Dilation contribution to the effective friction of the entire gouge (black curve) as a function of the 

slip distance. The energetic contribution of each band to dilation energy is colored under the friction curve such as 

the legend. Zone (i) is a point of interest explained within the text. (b) Frictional contribution to the effective 

friction of the entire gouge (black curve) as a function of the slip distance. The energetic contribution of each band 

to frictional energy is colored under the friction curve such as the legend. Note that the slip distance is expressed 

as a dimensionless quantity which is the ratio between the slip distance (m) under the size of particles (m), giving 

an equivalent number of particles. 

These energetic models seem to confirm the importance of Y-bands in the development of fault 

zones. The sum of the energetic contributions of all bands is higher than the bulk energy 

participation. We also note the non-equal and non-simultaneous contributions of the primary 

and secondary bands:  
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− The primary bands participate in the pre-peak phase for both dilation and frictional 

contributions. If the R'-bands were considered, it is assumed that they would play in this 

same zone. These bands are a precursory event in the life of a fault and could characterize 

the type of gouge material studied. Interestingly these primary bands did not appear for 

cemented material. It could be explained by the longer pre-peak zone observed here, and 

we suppose that they are characteristic of dense and non-cohesive material. Cemented 

materials with their brittle character directly switch to secondary R-bands. 

− The secondary bands and Y-bands seem to always form for dense materials (cemented or 

not) starting from the pre-peak zone and growing until the beginning of the weakening zone. 

Comments on unanswered questions 

− Why is the effective friction peak of the complete fault lower than that of the individual thin 

bands? It is a question of lack of synchronicity. Each R- or Y-band reaches its friction peak 

at different times, from one band to another, but also within each band individually (by the 

spatial variability of slip on each of them). As they do not synchronize to reach their own 

peak together, the peak of the entire gouge is thus lower than the individual peaks.  

− Why is the energy of the complete fault much higher than that of the thin bands? It is here 

a question of chronology. If there was only the  1 −band, there would be a perfect equality 

between the two energies. However, within the real simulated gouge, before activating this 

 1 −band and sliding on it alone, the fault takes lots of energetic dead ends: primary bands, 

then the secondary bands, the second  2 −band, and the bulk deformation. All these detours 

consume energy unnecessarily and contribute to increase the breakdown energy of the fault. 

In the end, these patterns (i.e. Riedel bands) lead to (i) reduce the intensity of the friction 

peak and (ii) increase the breakdown energy: consequently, it reduces considerably the 

weakening rate (i.e. the downward slope of the friction curve): it has, therefore, a powerful 

stabilizing effect on the fault. 

In future studies, we plan to perform these same studies on several models presented in Chapter 

4. The idea is to be able to observe different energetic behaviors depending on the parameters 

of the gouge and insert these models in dynamic modeling. Interparticle friction or stiffness 

may have a non-negligible influence on the link between local and global behavior. Another 

good reason to expand this study is to understand why the fault takes these different kinematic 

paths and be able to model them in order to write a friction law of the whole fault based on the 

energetic decomposition proposed. 

5.12. Conclusion of Part C 

This last section goes further in the analysis of Riedel bands and their link to deformation 

evolution and energy release of the system. First of all, it is possible to observe both global and 

local variations of Riedel band opening and sliding. The orientation angle of these bands can 

be different depending on whether the observed zone is in the center of the gouge or close to 

rock walls. Then, we observed the temporal evolution of Riedel bands with slip distance, 

focusing on the global opening variation of each band. Primary bands and secondary bands 

appear together, but primary bands grow faster, giving spaces to secondary bands at friction 
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 e k  W e    e  e o d r     d   e o e “     e”    e  de -activate the primary bands. The Y 

bands evolve progressively until steady-    e w ere   e   e o e   e o    “     e”    d        

representation of Riedel bands is really promising to realize microanalyses of the inside of each 

R- and Y-bands. 

Finally, we wondered about the role that these bands might have on the global behavior of the 

gouge and tried to connect the mechanical behavior inside each band to the entire gouge 

kinematic. An overview of the method is proposed with energetic description and proper 

relations between each band and the gouge. The energetic contribution of each band agrees with 

their time and space location but gives another way to observe Riedel mechanisms and to 

conclude on their role and activity.  

Although some simplifications and research are still missing to have a better energetic model, 

this little simplified model is very promising to study the Energy budget and the role of each 

Riedel band within the weakening mechanism as a function of the characteristics of each infill 

material. 
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Chapter 6. Conclusions & 

Perspectives 

6.1. Conclusions 

The fault gouge, coming from the wear of previous slips, acts on friction stability and plays a 

key role in the sudden energy release. A large part of slip mechanisms is influenced, if not 

controlled, by fault gouge characteristics and environment. During this thesis work, 2D Discrete 

Element Modelling was performed for a better understanding of (i) how infill material (matrix 

or cement) participate in the strengthening or weakening of the fault, (ii) the rheological 

behavior observed highlighting shear band formation, and its link with gouge characteristics, 

(iii) the contribution of each of these mechanisms in the observed breakdown energy and 

friction laws. Three main types of gouge samples were generated to simulate a mature fault 

gouge with infill material and then inserted between two rock walls to realize direct shear 

experiments using the software MELODY2D (Chapter 2). A dry contact model was considered 

to investigate mechanisms without fluid (displacement-driven and under constant confining 

pressure). Numerical simulations performed and the associated analyses provided answers to 

the questions raised in the General Introduction. 

• Which role plays cementation in the weakening of mature fault gouges?  

Do cemented materials promote slips in faults? A first fault gouge model was implemented 

with a cohesive law to mimic the cementation within the gouge (Chapter 3). Both initial porosity 

and surface percentage of cementation influence gouge weakening and slip behaviors, playing 

a role in the gouge strength (brittleness, cohesion) and granular flow (particles agglomerates, 

Riedel bands). High cementation within materials increases the shearing resistance, limiting in 

some way the number of slips that could take place in the fault, given that high stress is needed 

to observe a nucleation. However, for these materials, the observed stress drop is much larger 

and also steeper (sharp, short, and intense peak), which means that if the shear stress peak is 

reached, the observed slip is more likely to occur in an unstable manner and with high energy 

release. Both the critical distance of slipping and the nucleation length decrease with an increase 

in cementation (Chapter 5), confirming that not much mobility is allowed within the system, 

and increasing risks of instabilities to happen. Riedel bands, which are key elements in the 

understanding of stability in faults, are significantly affected by a change in contact laws 

between particles (cohesion or friction) occurring with cement breakage. They only appear for 

dense materials when a threshold of cementation is reached and are directly linked to the 

importance of the dilation phase since the majority of the gouge remains cemented even after 

the weakening phase. Low cemented materials follow a rather ductile behavior without 

observation of apparent Riedel bands inhibited by a critical dilation higher than 1%, whatever 

the tested samples are dense and mid-dense. The whole gouge area is sheared with low fracture 

energy and a low dilatancy. 

Although Riedel bands are not sufficient to detect unstable behavior, they are nevertheless 

necessary conditions, leading to the conclusion that dense and highly cemented materials are 
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more likely to generate unstable behaviors, while mid-dense or dense materials with very low 

cementation will rather tend towards a ductile, and stable behavior. 

How can the energy balance of a cemented gouge be decomposed and what mechanisms 

remain most influential? The effective friction was decomposed into three main mechanisms: 

gouge dilation, friction between particles, and breakage of the cemented bonds (Chapter 5, Part 

B). Using this decomposition, a simplified friction model is proposed as the sum of these three 

contributing frictions. The advantages of the proposed model are its ability to locate the 

different mechanisms over the fault displacement and quantify their relative contribution in 

fault gouge weakening. The same decomposition was performed from an energetic point of 

view, on the breakdown energy. Results obtained during simulations agree with previous 

research and highlight that the dilation phenomena is the main mechanism involved in the 

breakdown energy, even for cemented gouge. Although mid-dense materials have a rather linear 

increase on both the breakdown energy and the necessary energy to dilate the sample, the 

behavior of dense materials is more complex. As previously stated, the increase in cementation 

has a general tendency to promote unstable behaviors, but materials most likely to generate 

sliding instabilities are not the most cemented material but the mildly-cemented ones (between 

25% and 75% cementation). Indeed, the agglomerates of cohesive particles generated within 

the gouge make the fault rather heterogeneous and increase the roughness within the slip 

surface, which has the effect of significantly increase the dilation energy. This could generate 

a much higher slip velocity response during sliding. 

The energetic decomposition performed also allowed us to understand the reasons for a double 

weakening observed for dense and cemented materials. Effective friction curves present double 

weakening shapes for dense samples with a sufficiently high percentage of cementation (to 

create an internal cohesion higher than 1 MPa or 2.5 % of the applied normal stress). The first 

weakening is a combination of the three mechanisms (dilation, friction, and cement breakage), 

and the first corresponding stress peak increases with the increase in cementation 

(proportionally to the peak of frictional energy). The reduction of the number of particles in 

contact, coupled with the shear rate applied to the gouge increases contact friction for these 

particles. According to our observations, a second weakening is observed, mainly due to the 

decrease of dilation energy, which progressively weakens the effective friction. 

• Which role plays matrix particles in the weakening behavior of mature fault 

gouges? 

How important are the different physical and geometric characteristics of matrix particles 

in the slip behavior and on the rheology of Riedel bands formation and evolution? To 

answer this question, another gouge model was implemented in DEM, with a very dense sample 

composed of hexagonal-shaped particles representing matrix grains. The variation of the 

different geometrical (shape, size, and distribution of the grains) or physical (stiffness and 

interparticle friction) properties of the matrix represents different rock lithologies, allowing to 

observe a large variety of rheological behavior (Chapters 4 and 5). It appeared that all these 

lithologic variations could be summarized into only three parameters: (a) the bulk shear 
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modulus, (b) the ratio of gouge thickness to grain size (i.e. number of particles within the gouge 

thickness), and (c) the interparticle friction.  

A fault gouge with a small interparticle friction coefficient, a low number of grains in the gouge 

thickness or a high shear modulus will, in all three cases, tend to decrease the orientation angle 

of Riedel bands. This small angle is partly due to the presence of a Riedel structure with a large 

number of R' -bands (conjugate Riedels) inhibiting the formation of the R-band and delaying 

the arrival of a steady-state. However, their consequences on gouge strength, nucleation length, 

and breakdown energy are not similar and lead to different types of sliding behavior. Materials 

with both a low shear modulus and low interparticle friction, also show a reduction in the 

maximum frictional resistance. These materials are close to those defined as weak gouge 

materials [(Collettini et al., 2019), (Bedford et al., 2022)], with a rather ductile behavior that 

tends to increase both the critical slip distance and the critical nucleation length. Greater 

mobility is thus allowed within the fault, and the associated breakdown energy remains low, as 

for weakly cemented materials previously studied. The very low shear modulus combined with 

large regions of nucleation is more likely to tend towards slow slip nucleation (Leeman et al., 

2016). On the contrary, for low shear modulus with increasing interparticle friction (ex. 

mineral tr    or    o     e    r     r   e   d  r        e ro    e  …    o     e or e     o  

angle of Riedel bands and the number of Riedels observed are increasing. The critical slip 

distance is reduced (as the critical nucleation zone), leading to a more sudden weakening, which 

is prone to switch the fault behavior from a ductile aseismic response to a brittle seismic slip, 

depending on the stiffness of the surrounding medium. No more Riedel structure is observed. 

Materials with high shear modulus (ex. increase in interparticle stiffness) produce a higher 

resistance to slipping, giving a shorter nucleation length and slightly higher fracture energy. A 

rather strong, but unstable behavior is observed. For a reduction in the number of particles 

in the gouge thickness (ex. increase in the size of particles, reduction of the gouge thickness), 

the observed breakdown energy increases as well as the critical nucleation length. The 

mechanical behavior tends to the one of weak materials, but with a material that struggles to 

stabilize over time, explaining the higher fracture energy observed. But it also means that this 

long and smooth slip weakening decreases the probability of instabilities to occur. 

To which extent is there an influence on the proportion of matrix/grain and their 

distribution in the fault gouge samples? Direct shear tests conducted on a composite mixture 

between matrix and angular particles showed that the percentages of both matrix and angular 

particles, and initial porosity participate in the mechanics and rheology of fault gouge (Chapters 

4 and 5 Part A). Mixing angular grains with matrix grains strengthens the gouge regardless of 

the granular distribution in the sample. Indeed, gouges composed of a single type of material 

have a lower frictional resistance, partly due to a higher initial porosity, but also to a change in 

the distribution of contacts at the granular scale.   

The most slip-resistant material appears to be the one with the lowest percentage of the matrix 

but in which the porosity is close to zero. It is therefore a material with a very high shear 

modulus, implying a reduction of the orientation angle of the Riedel bands and formation of a 

more important Riedel structure. An increase in fracture energy is observed with decreasing 

matrix percentage as angular particles inhibit Riedels to join the Boundaries of the gouge and 
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to form Y-bands, leading to a deformation of the entire gouge. However, inhomogeneous and 

fractal grains distribution (angular particles) seems to favor a smoother and stable slip 

weakening than homogeneously distributed clasts which promote a very sudden friction drop, 

very likely to generate seismic instabilities. 

How the behavior of each Riedel shear band observed in the fault gouge can be related to 

the overall behavior of the gouge? To answer this question, the evolution of each Riedel 

   d ’     k e   w    o  owed o er    e   d     e       er      r       or    s purpose, the 

variation of the band opening was measured during the shearing process at different points of 

the Riedel band, giving a glimpse of both global and local variations of the band opening. Two 

   e  o   ow   ede   were o  er ed  “ r   r    ede  ”  row     er w         d      e  W e    e 

 r    o   e k    re   ed   e     e w    o   o  er        o   ow   ede       ed  “ e o d r    ede  ” 

(with slightly higher angle orientation). When secondary bands reach their maximum thickness, 

they de-activate the primary bands, which are no longer visible. These secondary bands persist 

during the whole shearing process.  The Y bands, on the other hand, evolve progressively from the 

end of the elastic phase and until steady-state is reached, where they become the only "active" bands 

(localizing particle displacements). 

Finally, the mechanical behavior inside each band has been connected to the entire gouge kinematic. 

To do so, the mechanical behavior of a single Riedel band was needed (friction and 

deformation). By shearing a gouge with tens of particles, inhibiting other Riedel formation in 

the Riedel, we model a one Riedel band behavior enabling to recover the associated friction and 

dilation. Each friction recovered from a single Riedel can be transformed into an energetical 

contribution to the whole gouge. By adding each energetic contribution as a function of the fault 

slip distance, an energy distribution map is drawn as a function of the total slip distance. The 

energetical contribution of each band is in adequation with their time and space location but gives 

another way to observe Riedel mechanisms and to conclude on their role and activity. This energetic 

model is still to be improved but allows a new form of decomposition of the breakdown energy 

according to the different rheological mechanisms that take place during the slip. 

• What friction laws can be used to model fault gouges with infill materials in 

dynamic models?  

Classical slip weakening models were first applied to the friction curves obtained, intending to 

approximate behaviors by making them more tractable to use for understanding fault weakening 

(Chapter 5, Part A). The linear slip weakening model is not valid for all the granular samples 

tested, since it is not accurate enough for some granular materials, as dense and highly cemented 

fault gouges that exhibit double frictional weakening. However, similar difficulties would have 

been encountered for a non-linear slip weakening model. A balance must be found between a 

too simple and a too complex model. For this reason, Chapter 5 proposes other friction and 

energetic laws linking local rheology and gouge mechanics. Simplified models proposed for 

cemented gouges (Part B) are pretty convincing about the final friction shape and evolution and 

the different mechanisms involved within gouge shearing. These friction laws could be adapted 

to a large range of imposed stress and velocity if properly fed with additional simulations. The 

energetic model used in Part C also intends to be easily integrated into a larger scale dynamic 

model in which one could specify the number of Riedel bands present and their category and 
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thus be able to test a multitude of deformation cases at larger scales and especially with a 

thorough study of the seismic or aseismic behavior generated by these slip localizations.  

These friction laws are primarily intended to be integrated into dynamic models at larger scales 

and are proposing a different view of friction laws that can be completed by rate-and-state laws 

widely used in fault mechanics.  

6.2. Perspectives 

Following the work done, several perspectives are proposed to this thesis either to improve our 

numerical models, to propose the next research steps, or to answer questions emerging from the 

Thesis work. 

Improvement in the present research 

− For several reasons explained in Chapters 1 and 2, the research carried out focused on a 

certain set of numerical experiments under a normal stress of 40 𝑀𝑃𝑎, a sliding velocity of 

1  /𝑠, and an initial gouge thickness of 2   . It might be interesting to extend the 

numerical campaign to cover a wider range of normal stresses, velocities, and gouge 

thicknesses, in order to derive an empirical friction law based on the micromechanical 

properties of the gouge.  

− The friction law obtained for cemented gouge (Chapter 5, Part B) can also be improved by 

changing the parameters law for mid-dense and poorly cemented materials. Further 

simulations might be undertaken to fulfill this objective. Cement evolution mostly depends 

on reaction-diffusion equations mimicking the transport and precipitation of minerals 

(Magnus Wangen, 1998). An interesting line of work could be the investigation of the 

characteristic time of cementation in a fault and to evaluate to what extent the associated 

evolution of the fault strength interacts with its seismic cycle. 

− The detailed analysis on the evolution of Riedel bands during sliding (Chapter 5, Part C) 

has only been performed for one gouge sample. It would be interesting to perform the same 

post-treatment study on the other simulations with different kinematics (variation of friction 

or interparticle stiffness, grain size, gouge thickness...). The results will allow us to observe 

how each characteristic of the gouge will influence the opening and activity of the different 

Riedel bands. It will also enrich the proposed energetic model according to the 

characteristics of the gouge. 

Study of the seismic and aseismic character of the tested granular fault gouge with 

dynamic modeling and earthquakes recurrence models 

Now that we have proposed energetical models for the different fault gouge studied, it would 

be interesting to insert them into larger-scale dynamic models to study the seismic or aseismic 

behavior of these different gouge materials. These models would be very instructive to complete 

the information learned about infill materials (cement and matrix) at the millimeter scale and 

especially to test our friction laws in larger dynamic scales. This part will be the subject of an 

upcoming study. 
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The well-known Burridge-Knopoff model [(Burridge & Knopoff, 1967), (Stefanou, 2020)], is 

a good starting point to quantify the seismic character of a fault. This model consists of an N-

degrees of freedom spring-slider system with specific friction laws at the sliding interface 

between blocks and sliding walls, Figure 128 (a). This model is very simple and allows a quick 

overview of the stability of the studied system as well as the prediction in time of slip events 

that can occur at the scale of the whole fault, Figure 128 (b). As a better perspective, we would 

like to turn to physics-based dynamic models of earthquake rupture that couple friction laws 

and the elastodynamics of coseismic off-fault damage and their effect on rupture dynamics, 

radiation and the global energy balance (Okubo et al., 2019a). The idea is to implement our 

different friction and energetic laws (Chapter 5) into such models and see if these laws have an 

impact on the entire behavior of the fault.  

 

Figure 128. 2-blocks model with RS friction. (a) Schema of the model, (b) Displacement versus time for block 1. 

Arrows indicate cycles when both blocks slipped simultaneously. (From Abe and Kato, 2013 and (Scholz, 2019)), 

(c) Image of dynamic rupture models with mesh discretization and the off-fault fractures. Every interface between 

elements is regarded as a potential failure plane. Typical friction laws can be implemented within the code, image 

from (Okubo et al., 2019a). 

Heterogeneous cemented faults 

Heterogeneous faults are known for their important role in friction weakening (Collettini et al., 

2019). The recent study by (Bedford et al., 2022) confirmed this result showing that 

heterogeneous faults (composed of quartz and clay) have a higher frictional weakening behavior 

and are less stable than their equivalent homogeneous fault gouges (composed of the same 

percentage of materials). In line with their work and our previous work on matrices and cement, 

it would be interesting to model a gouge composed of cemented and non-cemented materials 

(a) (b)

(c)
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non-homogeneously distributed, Figure 129. This could induce locking points within the fault, 

changes in dilatancy, and slip localization zones. 

 
Figure 129. Schema of a granular fault gouge with two different materials non-homogeneously distributed.𝜏 is 

the applied shearing stress and 𝜎𝑁 the normal stress. 

Weak gouge representation as a mixture of hard and soft particles 

In our work, completely rigid grains are assumed for both matrix and angular particles. 

However, it is obvious that weak materials with deformability properties, such as clays or talc, 

have a significant influence on the weakening behavior of faults [(Haines et al., 2009), (Orellana 

et al., 2018), (Kenigsberg et al., 2019)]. It would therefore be interesting to start again from the 

composite mixture of grains and matrix simulation and to replace the matrix grains with 

deformable particles.  

The software MELODY used for DEM modeling allows to deal with mixtures of both 

deformable and rigid grains and has already shown very interesting results for studies in the 

field of granular materials [(Mollon, 2018b), (Bouillanne et al., 2021)]. These studies could be 

compared with results already observed in Laboratory earthquakes. They would also provide 

insight into the behavior of weak or deformable mineral inclusions in gouge rheology and their 

implication in slow slip events: the proportion of weak minerals going into Riedel band 

localization, their deformability rate, and also the stresses observed within each compliant 

particle. 

Wear evolution during gouge shearing 

Another interesting approach is to observe the influence of a change in wall roughness due to 

the wear of the rock during sliding. For this, it is possible to model a fault gouge in three parts: 

a continuous and rigid part representing the host rock, a gouge material already presents in the 

fault and a degradable part (pre-cut) which may separate into wear particles (i.e. rock grains), 

Figure 130. This model can be realized with a (CZM)-contact law, often used in tribology 

applications to consider the effect of the wear of a material. Thus, it will be possible to observe 

several interesting phenomena such as a variability in the wavelength of the walls and an 

increase in the gouge during the sliding which will be likely to modify the slip weakening 

behavior. The addition of deformable rock walls also allows to observe the associated stress 

field, but this will be very costly in computing time. 
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Figure 130. Image modified from (Quacquarelli, 2021) with CZM - o        w  w          “      e”   w  

Temperature control and dynamic weakening 

Temperature control in fault gouges simulations is a major asset since it allows to highlight 

melting zones that are responsible for both a change in material behavior and rheology as well 

as a weakening of the gouge [(Otsuki et al., 2003), (Niemeijer et al., 2011)]. Recently a 

temperature control has been instrumented in the DEM software MELODY, allowing to follow 

temperature evolution during sliding by temperature increment in grains (Mollon et al., 2021b). 

It could be considered to add a module allowing to transform the initially rigid grains into 

deformable grains when the temperature becomes sufficiently high. The idea is to be able to 

observe the dynamic weakening effect, or secondary weakening observed with thermal 

activation. 
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Appendices to chapter 1 

A. Collection of Gouges 

For the creation of the numerical granular samples, we relied on numerous images of fault 

gouge from natural faults [(Olgaard & Brace, 1983), (Rutter et al., 1986), (Sammis et al., 1987), 

(Blenkinsop, 1991), (F. Chester et al., 1993), (Antonellini et al., 1994), (An & Sammis, 

1994),(Antonellini & Mollema, 2002), (Billi et al., 2003), (Billi & Storti, 2004), (Billi, 2005), 

(Wibberley et al., 2008), (Muto et al., 2015)] and experimental results [(Sammis et al., 1986), 

(Biegel et al., 1989), (Marone & Scholz, 1989), (Marone et al., 1990), (Beeler et al., 1996), 

(Mair & Marone, 1999), (Mair et al., 2002), etc] as well as on the work done by Heiarii Pons 

during its internship, who gathered the following images and descriptions of granular fault 

gouges in Figure 131. This graph gave us an idea of the wide variability of matrix percentages 

found in the literature. The numbers on the graph correspond to the images below N° [X]. 

 
Figure 131. Size of gouge particles (average) in (µ ) as a function of the percentage of the matrix with the granular 

sample. Graph from Heiarii Pons and created thanks to the images below and description in the associated papers. 

 
Figure 132. (a) & (b) Gneiss (15% chlorite), from San Gabriel Mountains, California, (Sammis et al., 1987); 

Optical photomicrograph showing the microtexture of (c) granitic cataclasite from the Itoigawa–Shizuoka tectonic 

line at Shimotsutaki Village, (d) the cataclastically deformed granitic conglomerate, Tanakura, Japan. Images from 

(Monzawa & Otsuki, 2003). (quartz et feldspar) (e) [N°21] Photomicrograph (crossed polars) of ATTL fault gouge. 

The particles are angular in shape, with fractal distribution ranging between 1.86 ≤ 𝐷 ≤ 2.92 and sizes between 

17.5 ≤  ≤ 480 µ . Friable rocks and lack of cohesion. Images from (Muto et al., 2015). 
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Figure 133. [N°1] Deformed quartzite with a cataclastic shear zone. Guapé, southern Minas Gerais State, SE Brazil. 

Width of view 4 mm. CPL,  [N°2] Narrow zone of fault breccia and cataclasite in a quartzitic parent rock. Buzios, 

Rio de Janeiro States SE Brazil. Width of view 4 mm. PPL (left). CPL (right), [N°3] Cataclasite showing angular 

rock fragments, mainly of quartz, embedded in a matrix of iron oxide. Buzios, Rio de Janeiro State, SE Brazil. 

Width of view 4 mm. Plain Polarized Light (PPL), [N°4] Transition between a fractured rock at lower left to a 

fault breccia in the center and to a mica bearing cataclasite in the upper right-hand part of the photograph. Buzios, 

Rio de Janeiro-State, SE Brazil. Width of view 3 mm. PPL, [N°5] Quartzite shows evidence of weak ductile 

deformation transected by a cataclastic shear zone.  Guapé, southern Minas Gerais State, SE Brazil. Width of view 

4 mm. CPL, [N°6] Deformed low-grade quartzite with a cataclastic shear zone in vertical position. Guapé, southern 

Minas Gerais State, SE Brazil. Width of view 4 mm. CPL, [N°7] Fault breccia, formed in a lowgrade mylonite 

derived from a quartz-feldspathic rock. Guapé, southern Minas Gerais State, SE Brazil. Width of view 22 mm. 

PPL, [N°8] Cataclasite is derived from a protomylonitic granite. Pyrenees, Spain. Width of view 20 mm. PPL, 

[N°9] Cataclasite developed in a mylonitic granite.  Uruguay. Width of view 16 mm. PPL, [N°10] Low-grade 

ultramylonite, transformed into a fault breccia in the upper part. Uruguay. Width of view 20 mm. PPL, [N°11] 

Fault breccia developing in a quartz-rich gneiss. San Juan, Argentina. Width of view 12 mm. CPL, [N°12] 

Cataclastic zone in deformed granite. Kaokoveld, Namibia. Width of view 16 mm. PPL, [N°13] Amphibole-
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bearing granodiorite (upper part) cut by a cataclastic fault zone (lower part). San Juan, Argentina. Width of view 

23 mm. CPL, [N°14] Cataclastic to protomylonitic granite cut by a zone of cataclasite (subhorizontal through the 

center). Leiden collection. Width of view 15 mm. PPL, [N°15] Cataclasite developed in an ultramylonite. Virginia, 

southern Minas Gerais State, SE Brazil. Width of view 20 mm. PPL, [N°16] A very low-grade mylonite, 

transitional to cataclasite, derived from hornblende syenite.Twijfelfontein, Kaokoveld, NW Namibia. Width of 

view 14 mm. CPL, [N°17] Example of a mosaic- r   e  ed  e d   r  or   ro            ow‐ r de    o   e 

derived from granite. St. Barthélemy Massif, French Pyrenees. Width of view 4 mm. CPL, [N°18] Low-grade 

mylonite derived from granite. St. Barthélemy Massif, French Pyrenees. Width of view 12 mm. CPL (Images from 

(Trouw et al., 2009).), [N°22] Cenozoic cataclasis of granite, from the Cajon Pass dritlhole, southern California, 

with (b) Particle Size Distributions with values of D equal to 2.32, depth 701 m. Images from (Blenkinsop, 1991). 

[N°23] Backscattered electron micrograph with trail development in experimentally deformed clay-silt gouge, 

through the intersection of an R1 shear, included ruffle particle in white, Betic Zone of southeastern Spain. Image 

from (Rutter et al., 1986).  [N°29] Granular fault gouge. Enlarged view of microstructures: black = particles; white 

=    r        e     μ        e   o  r  k   d  o  e    ro tructures. The granite was collected in the Val Verzasca, 

Switzerland, and consists of 35% quartz, 29% plagioclase, 27% K- feldspar, and 7% mica (mainly biotite). Image 

from (Heilbronner & Keulen, 2006), [N°33] Hematitic cataclasite fracture-filling separated by shear surface from 

microbrecciated and locally cataclastically foliated granite. Image from (Snoke et al., 1998). [N°34] Cataclasite 

fracture-fillings in granite. (b) [N°35] Cataclasites from a wide fault. Grains of quartz lied in a matrix of sericite 

and feldspar. Images from (Snoke et al., 1998). 
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Appendices to Chapter 2  

A. Time step (adaptative vs constant) 

The evolution of the peak and steady-state effective friction (average friction value within the 

plateau zone) is quite different depending on whether an adaptive time step or a constant time 

step is used for calculation. In order to quantify this difference between adaptive time step and 

constant time step, several studies have been carried out by varying the density of bodies. With 

a very small constant time step (Δ𝑡 = 10−  𝑠), a progressive increase of the friction peak 

(orange) is observed, whereas the evolution of the friction peak with an adaptive time step is 

varying a lot, Figure 134.  

 
Figure 134. Effective friction 𝜇∗ (peak in orange and stady-state in blue) as a function of particle density (𝑘𝑔/ 3), 

for constant time step and adaptative time step. 

At constant time step, the steady-state friction keeps the same average value of 0.46. However, 

for an adaptive time step the density is much more taken into account in the physics of the 

model. Indeed, the value of the steady-state friction increases as a function of the density of the 

bodies, until reaching a value of 0.56. The inertial effects are also much more marked in the 

case of an adaptive time step (blue area around friction curve), characteristics of the 

consideration of the increase in particle density. It appears that the adaptive time step of the 

software MELODY has been coded for deformable grains, having no or very little digital 

stiffness. The fact that a great numerical stiffness is used (𝑘𝑛 = 101  1016 Pa/m) disturbs 

the adaptive computation of the time step. It is, therefore, preferable to use a constant time step 

in these simulations with non-deformable rigid bodies. 

B. Generation of matrix particles 

The code Cvoro (C++) is a simplified version of the method presented with a Voronoï 

tessellation algorithm (Packing2D), allowing the creation of a dense packing of polygonal 

particles. It is possible to play on the size of particles ∅𝑒𝑞 (equivalent diameter of particles, 
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homogeneity/regularity of the hexagonal cells). Figure 135 presents different equivalent 

diameters of particles merged with angular grains created with Packing2D. As expected, the 

smaller matrix better fits the grain-matrix contour, keeping more information on the roughness 

of particles. If the grains are too close, we lose some information when a too high size matrix 

is used (∅𝑒𝑞 = 25 𝜇 ). In order to limit calculation costs due to the higher number of particles, 

we chose a ∅𝑒𝑞 = 20 𝜇  for the rest of the Thesis work, small enough to observe a matrix layer 

between all big particles. However, in the case of a mixture between angular particles and 

matrix, some roughness information will be lost or modified. 

For more information on how works « Cvoro » and how to use it, you can either contact 

Guilhem Mollon or Nathalie Casas. 

 
Figure 135. Variation of the equivalent size of matrix particles with angular grains. From ∅𝑒𝑞 = 10 𝜇  to ∅𝑒𝑞 =

25 𝜇  

C. Initial porosity and state of density 

The solid fraction 𝐹𝑠 is the ratio of the surface occupied by the grains ( 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠) to the apparent 

surface of the sample ( 𝑔𝑜 𝑔𝑒). Since we are here in 2D, we will take an area rather than a 

volume, considering that the 3rd dimension is the same in the numerator and denominator. In 

the associated manuscript, we mostly talk about the percentage of porosity (i.e. the ratio of the 

surface occupied by voids ( 𝑣𝑜𝑖𝑑𝑠) to the apparent surface of the sample). The solid fraction 

and porosity in a sample can therefore be calculated as follows, with S a surface area: 

𝐹𝑠 =
 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

 𝑔𝑜 𝑔𝑒

(𝐴. 2.1) 

𝐹𝑣 =
 𝑣𝑜𝑖𝑑𝑠

 𝑔𝑜 𝑔𝑒
= 1 − 𝐹𝑠  𝑃𝑝𝑜𝑟𝑒 = 𝐹𝑣 ∗ 100 (𝐴. 2.2) 

 𝑔𝑜 𝑔𝑒 =  𝑣𝑜𝑖𝑑𝑠 +  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝐴. 2.3) 

Compaction step – The initial interparticle friction coefficient (i.e. numerical friction 𝜇𝑛 𝑚) is 

used during the compaction phase of the gouge, to control the initial porosity of the sample 

(noted 𝑃𝑝𝑜𝑟𝑒 and defined as the ratio of the area occupied by voids to the apparent area of the 

sample). Eleven samples were compacted with different initial interparticle friction 𝜇𝑛 𝑚 and 

the solid fraction was measured at the end of the compaction step. With 𝜇𝑛 𝑚 = 0 between 

each particle in contact, the only contact parameter between grains is the numerical stiffness  
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𝑘𝑛  giving a quite dense packing of particles (𝐹𝑆 = 0.89). On the opposite, with 𝜇𝑛 𝑚 = 1, 

friction reduces possible movements and the resulting solid fraction is smaller, meaning much 

more porosity within the compacted state (𝐹𝑆 = 0.83). Similar results have been found on the 

influence of interparticle friction for the initial packing of particles (Shi et al., 2020). The idea 

is, therefore, to see the influence of this initial state on gouge shearing. The compaction of 

samples was carried out on a sample of 4960 grains generated according to a fractal distribution 

law (dimension factor 𝐷 =  2.6), i.e. with the same initial sample before the compaction step. 

Parameters used for sample compaction and shearing are written in Table 11. Figure 136 

displays the solid fraction and gouge thickness (  ) for each sample generated with a different 

interparticle friction coefficient. We observe that gouge thickness decreases with the increase 

of solid fraction.  

 

Figure 136. Evolution of solid fraction 𝐹𝑆 (in grey) and gouge thickness 𝑡ℎ𝑖  (in orange) as a function of the 

interparticle friction 𝜇𝑛 𝑚 used to compact samples. 

The highest solid faction (0.89) corresponds to a very dense sample in which there is very little 

porosity between grains. In contrast, the lowest solid fraction (0.83) corresponds to a slightly 

less dense sample, with a gouge thickness of 0.12    greater, (5 % of the total thickness).  

Samples used in chapter 3 are sample 10 (𝐹𝑆 = 0.89 or 𝑃𝑝𝑜𝑟𝑒 = 11 %) and 15 (𝐹𝑆 =

0.84 or 𝑃𝑝𝑜𝑟𝑒=16 %). 

Shearing step (for Chapter 3) – All the different initial compacted states have been sheared 

with an imposed velocity of 1m/s (with frictional contact law only) in order to quantify the 

influence of this initial state in the slip behavior of the gouge. Figure 137 shows that, to a certain 

extent, the initial state of compaction of the sample does influence the first steps of the gouge 

behavior. Comparing the evolution of effective friction as a function of the initial solid fraction, 

we observe that the denser initial sample (𝐹𝑆 = 0.89  or 𝑃𝑝𝑜𝑟𝑒 = 11 %) presents the higher 

friction strength with a friction peak 𝜇𝑝
∗ = 0.75.    e    e  e    or    o  er ed between 

0.86 ≤ 𝐹𝑆 ≤ 0.89, with an increasing peak strength with the increase of solid fraction. Particles 

organized themselves to upgrade packing and reduce voids between them. The increase of 

initial density of the granular sample (i.e. higher solid fraction) significates that packings of 
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grains become more difficult to unpack, and moving the entire sample asks for more energy to 

the system to reach a steady state. For lower solid fraction (0.86 ≥ 𝐹𝑆), the compaction state 

does not seem to be an obstacle to shearing and the effective friction progressively increases 

until a plate where we suppose the system is in steady-state (cf. inertial number). The mid-dense 

sample (𝐹𝑆 = 0.84 or 𝑃𝑝𝑜𝑟𝑒=16 %), has a friction peak almost missing. Even though the 

effective peak depends on the initial solid fraction, if the shearing proceeds for a certain time 

of the experiment, all the samples exhibit the same mechanical behavior with the same steady-

state friction 𝜇𝑠𝑠
∗   

 

Figure 137. Effective friction 𝜇 
∗ as a function of the initial solid fraction 𝐹𝑆 (at the end of the compacted state), 

results from the shearing of granular samples with the following parameters (𝜎𝑁 = 40 𝑀𝑃𝑎, 𝑉 = 1 𝑠⁄ , 𝜌𝑟 =

2600 𝑘𝑔  3⁄ , 𝑘 = 101  𝑃𝑎/ , 𝜇𝑛 𝑚 = 0.5). 

Table 11. Numerical setup and properties for the experimental campaign 

Property Associated variable Value 

Normal stress 𝜎𝑁 40 𝑀𝑃𝑎 

Shear velocity V (for shearing only) 1  /𝑠 

Rock density 𝜌𝑟 2600 grains 𝑘𝑔/ 3 

Contact stiffness 𝑘𝑛 & 𝑘𝑡 101  𝑃𝑎/  

Interparticle friction 

(compaction) 
𝜇𝑛 𝑚 From 0 to 1 

Interparticle friction 

(shearing) 
𝜇𝑛 𝑚 

0.5 (grains – grains) / 1 

(grains –walls) 

Initial Sample size 𝑡ℎ𝑖 × 𝐿𝑔 2 x 20 mm 

Particle equivalent diameter  𝑚𝑖𝑛    𝑚𝑎𝑥 28   226 𝜇  

Number of particles    4960 

DEM time step Δ𝑡 10−  s (∆𝑡 = cst) 

Proximity updating period Δ𝑡−𝑐𝑜𝑛𝑡𝑎𝑐𝑡 10−7 s 
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D. Circular vs angular particles 

The numerical and physical characteristics of both samples (circular and angular particles) used 

in Chapter 2 are presented in Table 12. 

Table 12. Data of both models with circular or angular particles. The granular layer with circular shapes of grains 

is generated with the same parameters as the one with angular particles. 

Property Angular particles Circular particles 

Normal stress, 𝜎𝑁 40 𝑀𝑃𝑎 

Shear velocity, 𝑉 1  /𝑠 

Rock density, 𝜌𝑟 2600 grains 𝑘𝑔/ 3 

Contact stiffness, 𝑘𝑛 &  𝑘𝑡 101  𝑃𝑎/  

Interparticle friction, 𝜇𝑛 𝑚 0.5 (grains – grains) / 1 (grains –walls) 

Sample size, 𝑡ℎ 𝑥 𝐿𝑔 
 1.7 x 20 mm 

Particle equivalent diameter,  𝑚𝑖𝑛 –  𝑚𝑎𝑥 28 –     μ  20 – 181 µm 

Number of particles,    4960 7515 

DEM time step, Δ𝑡 10−  s 

Proximity updating period, Δ𝑡−𝑐𝑜𝑛𝑡𝑎𝑐𝑡 10−7  s 
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Appendices to Chapter 3  

A. Numerical stiffness influence 

As explained in Chapter 2, numerical stiffnesses are not completely physical nor numerical but 

make it possible to quantify the rate of interpenetration between the bodies in contact. A 

stiffness that tends towards infinity will give grains that will be tangent, while a weak stiffness 

will make that the bodies in contact can be allowed to overlap. Tests were carried out with 

different stiffnesses from 101  𝑃𝑎/  to 1017 𝑃𝑎/ , in order to quantify the interpenetrations 

between the particles in contact. Figure 138 presents the evolution of effective friction as a 

function of the numerical stiffness between particles.  

 
Figure 138. Effective friction 𝜇∗ as a function of numerical stiffness 𝑘𝑛(𝑃𝑎/ ). 

Changing the numerical stiffness does not have a major influence on the effective steady-state 

friction coefficient which has the same averaged value 𝜇𝑠𝑠
∗ ≈ 0.45  On the other hand, we note 

that an increase in numerical stiffness augments the standard deviation from the average friction 

value. In other words, the dynamic effects are greater with higher stiffness, since the 

interpenetrations which could also serve as damping are reduced. It is interesting to be able to 

choose both a fairly high stiffness, allowing to have realistic modeling concerning the contacts 

between the bodies, but also about the dynamics of the system. A stiffness of 101  𝑃𝑎/  

reveals too high interpenetrations, whereas a stiffness of 1016 or 1017 𝑃𝑎/  gives too many 

spaces for dynamic effects in the numerical shearing. The stiffness 101  𝑃𝑎/  allows us to 

obtain more precise results than 101  𝑃𝑎/ , while remaining in models with a standard 

deviation from the average steady-state friction lower than 10 %.  

Besides, it is also possible to compute the equivalent Young modulus 𝐸 for a typical rock as 

granite for our cemented materials, thanks to the parameter of a cemented contact between 

particles: 

𝐸 =
𝜎

휀
=

𝐶𝑛 𝑚

𝐶𝑛 𝑚

𝑘𝑛
∗

1
 𝑔

=  𝑔. 𝑘𝑛  [𝑃𝑎] (𝐴. 3.1)
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With 𝜎 the normal stress applied on a contact (Pa), 휀 the deformation of the contact, 𝐶𝑛 𝑚 the numerical cohesion 

implemented in the cemented materials (Pa), 𝑘𝑛 the numerical stiffness (Pa/m),  𝑔 the equivalent particle diameter 

(m).  

Figure 139 displays the equivalent Young modulus 𝐸 as a function of the interparticle stiffness 

for different equivalent grain diameter  𝑔 and comparing values to those observe in real rocks 

(blue band). Using an interparticle stiffness of 101  𝑃𝑎/  gather more values of young 

modulus from common rocks than the other values.  

It was thus chosen to continue the simulation campaign with a numerical stiffness of 

101  𝑃𝑎/  which is numerically and physically consistent. 

 
Figure 139. Equivalent Young modulus (GPa) as a function of the interparticle stiffness 𝜇𝑛 𝑚 for the maximum 

equivalent grain diameter  𝑚𝑎𝑥 and the minimum grain diameter  𝑚𝑖𝑛. The blue band represents the range of 

Young modulus values for common rocks. 

B. Reproducibility 

In order to validate the model and results obtained within packing 2D and the DEM code 

MELODY, reproducibility tests have been carried out with the same parameters as the material 

of Chapter 2. Four granular samples were generated randomly with the same initial 

characteristics (with Packing2D) meaning that the granular samples are globally identical, but 

locally different (each sample is unique in terms of grain position and shapes). They are all 

composed of 5000 grains distributed randomly according to a fractal granular distribution in 

the defined area of 2x20 mm² and their initial solid fraction is equal to 0.89. The four samples 

are named from 1 to 4, Figure 140. By comparing the results from the different samples, it can 

be seen that the effective friction peak, the averaged values at steady-state of friction and 

dilation remain constant over the four samples: steady-state friction is around 0.47 with a 

relative margin of 2 % from this value, and dilation is also similar with an averaged value at 

steady-state ≈ 0.092. Although steady-state values remain very close, each sample represents 

a different stack of grains distinct local evolutions of the gouge with upper wall slip distance. 
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This small study validates that a granular sample generated and sheared with the same 

initial conditions (i.e. same global geometry, numerical and physical boundary 

conditions), produces the same mechanical results. The resulting kinematic is also 

similar. 

 
Figure 140. (a) Effective friction peak 𝜇𝑝

∗  and steady-state effective friction 𝜇𝑠𝑠
∗  (respectively in grey and black) 

and dilation at steady-state 휀𝑦−𝑠𝑠
  (in red) for the four samples randomly generated with the same initial conditions. 

C. Results tables for cemented materials 

Table 13. Results for dense samples (𝑃𝑝𝑜𝑟𝑒 = 11% or solid fraction SF=0.89). With ∆τ (Pa) the stress drop from 

the effective friction peak to the plateau, 𝜇𝑆𝑆
∗  the steady-state effective friction, 𝜇𝑝

∗  the effective friction peak,   −   

the steady-state solid fraction, 𝑃𝑝𝑜𝑟𝑒−𝑆𝑆 the steady-state porosity, th    the steady-state gouge thickness. 

𝑪 𝒖𝒎 100 200 500 800 1000 1200 1500 2000 2500 

𝑷 𝒆𝒎 (%) 4 8 19 30 38 46 57 76 95 

∆𝝉 (Pa) 1.1+07 1.1E+07 1.8E+07 3.0E+07 3.6E+07 4.2E+07 5.3E+07 6.8E+07 8.8E+07 

𝝁𝑺𝑺
∗  0.481 0.482 0.490 0.477 0.496 0.484 0.475 0.473 0.431 

𝝁𝒑
∗  0.771 0.786 0.994 1.406 1.695 1.938 2.376 3.094 3.838 

 𝑺−𝑺𝑺 
 0.869 0.867 0.876 0.877 0.869 0.87 0.884 0.895 0.889 

𝑷𝒑 𝒓𝒆−𝑺𝑺 0.131 0.133 0.124 0.123 0.131 0.13 0.116 0.105 0.111 

𝒕𝒉𝑺𝑺 

(mm) 
1.72 1.726 1.707 1.705 1.72 1.719 1.691 1.671 1.681 
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Table 14. Results for mid-dense samples (𝑃𝑝𝑜𝑟𝑒 = 16%  or initial solid fraction SF=0.84) With ∆τ (Pa) the stress 

drop from the effective friction peak to the plateau, 𝜇𝑆𝑆
∗  the steady-state effective friction, 𝜇𝑝

∗  the effective friction 

peak,   −   the steady-state solid fraction, 𝑃𝑝𝑜𝑟𝑒−𝑆𝑆 the steady-state porosity, th    the steady-state gouge thickness. 

𝑪 𝒖𝒎 100 200 500 800 1000 1200 1500 2000 

𝑷 𝒆𝒎(%) 3 6 18 31 40 50 66 95 

∆𝝉 (Pa) 3.0E+06 2.6E+06 3.7E+06 9.1E+06 1.4E+07 1.9E+07 2.6E+07 3.6E+07 

𝝁𝑺𝑺
∗  0.461 0.466 0.460 0.458 0.469 0.479 0.476 0.455 

𝝁𝒑
∗  0.536 0.531 0.552 0.684 0.815 0.959 1.130 1.346 

 𝑺−𝑺𝑺 0.855 0.854 0.852 0.85 0.851 0.857 0.864 0.858 

𝑷𝒑 𝒓𝒆−𝑺𝑺 0.145 0.146 0.148 0.15 0.149 0.143 0.136 0.142 

𝒕𝒉𝑺𝑺 

(mm) 
1.749 1.752 1.756 1.766 1.757 1.745 1.73 1.742 

More data and results files are available at: “Casas, Nathalie; Mollon, Guilhem (2022), 

“Cohesion and Initial Porosity of Granular Fault Gouges”, Mendeley Data, V3, doi: 

10.17632/7c3dcj7spw.3” 

The representation of the relative damage gives a picture of the state of cementation between 

grains and their location within the gouge. This damage is set to 0 when cohesive bonds are 

first established (all the bonds are intact) and may evolve until 1 if all these bonds reach the 

“ roke ”                  er                  re     e d    e w    re  e    o                e    e 

following movies illustrate the evolution of the gouge state as a function of the slip distance: 

Movie S1. Comparison of the evolution of relative damage with slip distance for dense samples (entire 

granular gouge), between 8% cementation (mildly cemented material) and 38% cementation (cemented 

material). From zero imposed slip [A] to the beginning of steady-state [G]. 

Movie S2. Comparison of the evolution of relative damage with slip distance for dense samples (entire 

granular gouge), between 38% cementation (cemented material) and 95% cementation (ultra-cemented 

material). From zero imposed slip [A] to the beginning of steady-state [G]. 

The following movies present the evolution of solid fraction as a function of the slip 

distance for the three regimes highlighted in the paper. Another way to observe Riedel 

bands and cracks within the gouge. 

Movie S3. The solid fraction in the dense sample (entire granular gouge) as a function of the slip distance 

for 8% cementation (mildly cemented material). From zero imposed slip [A] to the beginning of steady-

state [G].  

Movie S4. The solid fraction in the dense sample (entire granular gouge) is a function of the slip distance 

for 38% cementation (cemented material). From zero imposed slip [A] to the beginning of steady-state 

[G]. 

Movie S5. The solid fraction in the dense sample (entire granular gouge) as a function of the slip distance 

for 95% cementation (ultra-cemented material). From zero imposed slip [A] to the beginning of steady-

state [G]. 

  

https://youtu.be/rGr7_BcSDLo
https://youtu.be/X_mabYdGjKw
https://youtu.be/RpQ2BSOXiXg
https://youtu.be/VWPYsipdzvU
https://youtu.be/BThBnFUwDN8
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Appendices to Chapter 4  

A. Representative Surface Element (RSE) 

Different lengths of matrices are created to evaluate the influence of this parameter on shear 

localization and granular behavior. In order to observe the influence of the length of the granular 

third body, five samples are generated: L2 (2 × 2   ²), L4 (4 × 2   ²), L10 (10 × 2   ²), 

L20 (20 × 2   ²), & L40 (40 × 2   ²) with an interparticle friction 𝜇𝑛 𝑚 equal to 0.3 

between cells. In Figure 141, from 0 to point 𝐴1, a first elastic linear part is observed with the 

same behavior for all samples. At point  1 (friction peak), almost all samples behave in the 

same way except for the L2 sample, which has a specific behavior due to its particularly small 

size. Point 𝐶1 is very interesting, this is the decreasing friction point located at the middle 

distance between friction peak and steady-state friction. An evolution of suddenness of friction 

weakening is observed (i.e. slip distance needed for friction to drop from 𝜇𝑝
∗  to 𝜇𝑠𝑠

∗ ) and this 

area is also the place of maximum dilatancy. Increasing the length of the matrix softens the 

transition between 𝜇𝑝
∗  to 𝜇𝑠𝑠

∗  until a certain limit. It also expands the dilation of the sample, 

Figure 141 (b). Friction transition evolution stops evolving from after L20 (i.e. Representative 

Surface Element obtained for this gouge thickness, see the path of L40 in Figure 141 (a). The 

same behavior is obtained for dilation, increasing until L20. However, changing the gouge 

thickness or size of particles modifies the global stiffness of the granular media and thus could 

influence the RSE. 

 
Figure 141. (a) Effective friction 𝜇∗ as a function of the slip distance (mm) for different sizes of models, 𝐿2 (2x2 

mm²), 𝐿  (4x2 mm²), 𝐿10 (10x2 mm²), 𝐿20 (20x2 mm²), 𝐿 0 (40x2 mm²). 𝜇𝑝
∗  is the peak friction and  𝜇𝑠𝑠

∗  the steady 

state friction; (b) Dilation as a function of the slip distance (mm) for the same sizes of models. 

Between 𝜇𝑝
∗  and 𝜇𝑠𝑠

∗ , crack opening takes place in a preferred Riedel band R at 𝐶1, where a 

maximum dilatancy is observed (i.e. minimum solid fraction inside the Riedel shear). The 

augmentation of the length of the matrix does not seem to change the formation of observed 

Riedel shear bands. However, this increase creates a larger observation window displaying 

more Riedel bands within the sample. These bands are always inclined with the same 

orientation of ≈ 10 ° from the main shear direction. They grow from the top surface to the 

bottom rock wall in the opposite direction of shearing. Steady-state is reached with the 

formation of a localized horizontal shear band S at the top or bottom part of the granular media. 

E
ff

ec
ti

v
e 

F
ri

ct
io

n
 𝜇

∗

Slip distance (mm)

𝜇𝑆𝑆
∗

𝐴1
𝐶1 𝐸1

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1 𝜇𝑝
∗   1

0
0

L2

L4

L10

L20

L40

(a)

D
il

at
io

n
  

𝑦

Slip distance (mm)
0.1 0.2 0.3 0.4 0.5 0.6

0.01

0.02

0.03

0.04

0
0

0.05

0.06 L2

L4
L10 L20 L40

(b)



 

 

212 Appendices to Chapter 4 

B. Gouge thickness 

Figure 142 presents the effective friction and dilation as a function of the effective friction for 

two different gouge thicknesses, 1 and 3 mm. All the other parameters are similar. The effective 

friction peak is almost similar for both cases, as the steady-state friction. But the dilation is 

higher with a more important gouge layer, which is consistent with the theory. 

 
Figure 142. Effective friction 𝜇∗ and dilation 휀𝑦 as a function of the effective friction for two different gouge 

thicknesses, 1 and 3 mm. 

C. Shear modulus calculi and graphs 

The shear modulus, Figure 143, can be calculated as 

𝐺 =
𝜏

𝛾𝑥𝑦
=

𝜏. 𝑡ℎ𝑖

∆𝑥

(𝐴. 4.1) 

where 𝜏 is the shearing stress, 𝑡ℎ𝑖 the initial gouge width and ∆𝑥 the slip distance at the secant 

point. We compute both the secant shear modulus (at 40% of the maximum shear stress) and 

the initial tangent shear modulus. The results for all the models are presented in  

Table 15. 

 
Figure 143. Automatic calculation with Matlab 2020a. Sketch of the shear stress as a function of the shear strain 

with the secant shear modulus at 40 % of the maximum shear stress (red) and the initial tangential shear modulus 

(blue). Example realized for the thin gouge of the standard case (size 20 x 0.2   ², 𝜇𝑛 𝑚 = 0.3, 𝑘𝑛 =

101  𝑃𝑎/ , P0.5,  = 20𝜇 ). 

Dilation (휀𝑦 
 )

𝜇𝑆𝑆
∗

𝜇𝑝
∗

Effective Friction 𝜇∗

→
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Table 15: Secant shear modulus and tangential shear modulus for the different cases of study.  

name 

Size 

𝐿𝑔  × 𝑡ℎ𝑖 

(  ) 

Friction 

𝜇𝑖 

Stiffness 

𝑘𝑛 

(𝑃𝑎/ ) 

Diameter 

 𝑖 

(  ) 

Gsec 

𝐺𝑠 

(𝐺𝑃𝑎) 

Gtan 

𝐺𝑡 

(𝐺𝑃𝑎) 

P 

𝑃𝑖  

M-S 20x2 0.3 101  0.02 5.52 10.4 0.5 

M-S-bis 20x2 0.3 101  0.02 5.73 12.2 0.5 

M-RES-3 10x2 0.3 101  0.02 5.54 10.4 0.5 

M-RES-2 4x2 0.3 101  0.02 5.5 10.3 0.5 

M-RES-1 2x2 0.3 101  0.02 5.53 10.9 0.5 

M-RES-4 40x2 0.3 101  0.02 5.49 10.4 0.5 

M-RES-3-F 2x2 0.6 101  0.02 4.76 9.17 0.5 

M-RES-2-F 4x2 0.6 101  0.02 4.71 8.89 0.5 

M-RES-1-F 10x2 0.6 101  0.02 5.11 9.07 0.5 

M-F01 20x2 0.1 101  0.02 5.38 12.4 0.5 

M-F02 20x2 0.2 101  0.02 5.71 12.8 0.5 

M-F06 20x2 0.6 101  0.02 5.05 9.04 0.5 

M-RES-4-F 40x2 0.6 101  0.02 4.98 9.02 0.5 

M-PS-30 20x2 0.3 101  0.03 8.36 16.1 0.5 

M-PS-30-Keq 20x2 0.3 6.8.101  0.03 6.22 12.2 0.5 

M-PS-40 20x2 0.3 101  0.04 11.2 23.3 0.5 

M-PS-40- Keq 20x2 0.3 4.7.101  0.04 6.2 12.2 0.5 

M-PS-50 20x2 0.3 101  0.05 14.1 32.4 0.5 

M-PS-50- Keq 20x2 0.3 4.101  0.05 6.86 13.6 0.5 

M-Kx2 20x2 0.3 2. 101  0.02 10.5 24 0.5 

M-Kx10 20x2 0.3 1016 0.02 41.9 170 0.5 

M-P-02 20x2 0.3 101  0.02 5.87 9.83 0.2 

M-P-08 20x2 0.3 101  0.02 5.02 10.9 0.8 

M-P-08-Kx2 20x2 0.3 2. 101  0.02 9.39 25.4 0.8 

M-Th-1 20x1 0.3 101  0.02 5.77 12.2 0.5 

M-Th-3 20x3 0.3 101  0.02 5.41 9.015 0.5 

M-Th-4 20x4 0.3 101  0.02 5.35 9.15 0.5 

M-SG-P02 20x0.2 0.3 101  0.02 6.07 9.12 0.2 

M-SG-S 20x0.2 0.3 101  0.02 5.85 9.83 0.5 

M-SG-k10 20x0.2 0.3 1016 0.02 46.6 85.7 0.5 

M-SG-P08 20x0.2 0.3 101  0.02 5.17 10.6 0.8 

M-SG-k2 20x0.2 0.3 2. 101  0.02 10.7 18.7 0.5 

M-SG-k5 20x0.2 0.3 5. 101  0.02 24.5 44.8 0.5 

M-SG-F06 20x0.2 0.6 101  0.02 5.6 9.7 0.5 

 

D. Mechanical behavior of a bi-disperse mixture 

Figure 144 presents friction and dilation curves as a function of the slip distance for the four 

samples detailed in chapter 4, part B: (G-C-4), with 𝑃𝑚𝑎𝑡𝑟𝑖𝑥 = 0 %, (MG-33) with 𝑃𝑚𝑎𝑡𝑟𝑖𝑥 =

33 %, (MG-56) with 𝑃𝑚𝑎𝑡𝑟𝑖𝑥 = 56 % and (M-S) with 𝑃𝑚𝑎𝑡𝑟𝑖𝑥 = 100 %. 
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Figure 144. (a) Effective friction as a function of the slip distance (mm) for different percentages of matrix particles 

(P    ix = 0, 33, 56 & 100%). (b) Dilation (%) as a function of the slip distance (mm) for the same cases. The first 

points for simulation with 0% of matrix particles or only angular particles have been made with interparticle 

friction of 0.5 which is higher than the one used in the other studies. 
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Appendices to Chapter 5  

A. Weakening slope (Part A) 

In the following graphs, the slope of slip weakening is extracted from each model previously 

presented thanks to the method described in Chapter 5, (Figure 145, Figure 146, Figure 147, 

Figure 148, Figure 149, Figure 150). 

❖ Cemented materials 

 

Figure 145. Shear stress (Pa) as a function of the slip distance (m) for dense cemented models (Chapter 3). 

Percentage of cementation from 𝑃𝑐𝑒𝑚 = 4  95%. The red slope is the linear slip weakening slope needed to equal 

the breakdown energy 𝐸𝐺 . 
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Figure 146. Shear stress (Pa) as a function of the slip distance (m) for mid-dense cemented models (Chapter 3). 

Percentage of cementation from 𝑃𝑐𝑒𝑚 = 3  95%. The red slope is the linear slip weakening slope needed to equal 

the breakdown energy 𝐸𝐺 . 
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Figure 147. Shear stress (Pa) as a function of the slip distance (m) for matrix models (chap. 4, part A). Variation 

of the interparticle friction 𝜇𝑛 𝑚 = 0.1  0.6. The red slope is the linear slip weakening slope needed to equal 

the breakdown energy 𝐸𝐺 . 

 

Figure 148. Shear stress (Pa) as a function of the slip distance (m) for matrix models (chap. 4, part A). (a) to (d): 

Variation of the size of particle from  𝑒𝑞 = 20  50 𝜇  . (e) to (h): Variation of the size of particle from 

 𝑒𝑞 = 20  50 𝜇   with equivalent stiffness. The red slope is the linear slip weakening slope needed to equal 

the breakdown energy 𝐸𝐺 . 
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.  

Figure 149. Shear stress (Pa) as a function of the slip distance (m) for matrix models (chap. 4, part A). (a) to (c): 

Variation of the interparticle stiffness from 𝑘𝑛 = 101  1016 𝑃𝑎/ . (d) to (f): Variation of the perturbation 

from 𝑃𝑖 = 0.2  0.8. (g) to (i): Variation of the initial thickness 𝑡ℎ𝑖 = 1  3    . The red slope is the linear 

slip weakening slope needed to equal the breakdown energy 𝐸𝐺 . 

 

❖ Matrix & grains models 

 
Figure 150. Shear stress (Pa) as a function of the slip distance (m) for matrix models (chap. 4, part A). Variation 

of the interparticle stiffness from 𝑃𝑚𝑎𝑡𝑟𝑖𝑥 = 33  86%. The red slope is the linear slip weakening slope needed 

to equal the breakdown energy 𝐸𝐺 . 
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B. Empirical parametric laws (Part B) 

The laws used to represent the evolution of the shape parameters are presented below. These 

are the behavior laws of each of the 7 parameters considered in the simplified models. Constant 

and numerical variables are displayed in Table 16. 

• Parameters used for dilation law:  

Maximum dilatancy angle Ψp (°): 

Ψ𝑝(𝑃𝑐𝑒𝑚 
) =

{
 
 

 
 

Ψ𝑝−𝑚𝑖𝑛, 𝑃𝑐𝑒𝑚 
≤ 𝐶 in

Ψ𝑝−𝑚𝑖𝑛 + (𝑃𝑐𝑒𝑚 − 𝐶 in) ∗
(Ψ𝑝−𝑚𝑎𝑥 − Ψ𝑝−𝑚𝑖𝑛)

(𝐶  x − 𝐶 in)
 , 𝐶 in < 𝑃𝑐𝑒𝑚  

< 𝐶  x

 
Ψ𝑝−𝑚𝑎𝑥 , 𝑃𝑐𝑒𝑚  

≥ 𝐶  x

   (𝐴. 5.1) 

Slip distance corresponding to the maximum dilatancy 𝑈𝑑𝑝(𝜇 ): 

𝑈𝑑𝑝(𝑃𝑐𝑒𝑚 
) =

{
 
 

 
 𝑈𝑑𝑝𝑣𝑎𝑙

(1) ←   𝑃𝑐𝑒𝑚 
= 𝐶 in−2 

 1 ∗ 𝑃𝑐𝑒𝑚
2 +  2 ∗ 𝑃𝑐𝑒𝑚 +  3 ← 𝐶 in−2 < 𝑃𝑐𝑒𝑚  

< 𝐶  x

 𝑈𝑑𝑝𝑣𝑎𝑙
(3), 𝑃𝑐𝑒𝑚  

≥ 𝐶  x

  

   (𝐴. 5.2) 

With  𝑜𝑒𝑓𝑠1 =  (

𝐶 in−2 
2 𝐶 in−2 1

𝐶  x−2 
2 𝐶  x−2 1

2𝐶  x−2 1 0

) (

𝑈𝑑𝑝𝑣𝑎𝑙
(1)

𝑈𝑑𝑝𝑣𝑎𝑙
(2)

𝑈𝑑𝑝𝑣𝑎𝑙
(3)

)⁄  = [ 1,  2,  3]  

Gain in gouge thickness at the end of the dilatancy phase ∆𝐻𝑑(𝜇 ): 

Δ𝐻𝑑(𝑃𝑐𝑒𝑚 
) =

{
 
 

 
 

𝐻𝑑(1) ←   𝑃𝑐𝑒𝑚 
≤ 𝐶 in

 11 ∗ 𝑃𝑐𝑒𝑚
2 +  22 ∗ 𝑃𝑐𝑒𝑚 +  33 ←  𝐶 in < 𝑃𝑐𝑒𝑚  

< 𝐶  x

 
𝐻𝑑(3), 𝑃𝑐𝑒𝑚  

≥ 𝐶  x

   (𝐴. 5.3) 

With   𝑜𝑒𝑓𝑠2 =  

(

 
 

𝐶 in 
2 𝐶 in 1

(
𝐶  x 

 + 𝐶𝑚𝑖𝑛

2
)
2

(
𝐶  x 

 + 𝐶𝑚𝑖𝑛

2
) 1

𝐶  x 
2 𝐶  x 1)

 
 

(

𝐻𝑑(1)

𝐻𝑑(2)

𝐻𝑑(3)
)⁄  = [ 11,  22,  33]  

• Parameters used for Coulomb friction law:  

Peak friction at the end of the elastic phase 𝜇𝑓𝑝
∗  and post-peak friction 𝜇𝑓𝑝𝑝

∗ : 

μ𝑓𝑝
∗ (𝑃𝑐𝑒𝑚 

) = {𝜇𝑓𝑝_𝑣𝑎𝑙
∗ (1) +

𝑃𝑐𝑒𝑚

100
∗ (𝜇𝑓𝑝𝑣𝑎𝑙

∗ (3) − 𝜇𝑓𝑝𝑣𝑎𝑙

∗ (1)) (𝐴. 5.4) 
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μ𝑓𝑝𝑝
∗ (𝑃𝑐𝑒𝑚 

) = {𝜇𝑓𝑝𝑝_𝑣𝑎𝑙
∗ (1) +

𝑃𝑐𝑒𝑚

100
∗ (𝜇𝑓𝑝𝑝_𝑣𝑎𝑙

∗ (3) − 𝜇𝑓𝑝𝑝_𝑣𝑎𝑙
∗ (1)) (𝐴. 5.5) 

𝑊 𝑡ℎ  Ufp(𝑃𝑐𝑒𝑚 
) = μ𝑓𝑝

∗ /𝑘  

Characteristic distance of the exponential decay ∆𝑈𝑓(𝜇 ): 

Δ𝑈𝑓(𝑃𝑐𝑒𝑚 
) =

{
 
 

 
 

Δ𝑈(1) ←   𝑃𝑐𝑒𝑚 
≤ 𝐶 in

 111 ∗ 𝑃𝑐𝑒𝑚
2 +  222 ∗ 𝑃𝑐𝑒𝑚 +  333 ←  𝐶 in < 𝑃𝑐𝑒𝑚  

< 𝐶  x

 
Δ𝑈(3), 𝑃𝑐𝑒𝑚  

≥ 𝐶  x

   (𝐴. 5.6) 

With   𝑜𝑒𝑓𝑠3 =  (

𝐶 in 
2 𝐶 in 1

𝐶  x 
2 𝐶  x 1

2𝐶  x−2 1 0

) (
Δ𝑈(1)

Δ𝑈(2)

0
)⁄  = [ 111,  222,  333]  

• Parameters used for damage law:  

Maximum friction induced by rupture of cementation 𝜇𝑑𝑝
∗ : 

μ𝑑𝑝
∗ (𝑃𝑐𝑒𝑚 

) =
𝑃𝑐𝑒𝑚

100
∗ 𝜇𝑑𝑝_𝑚𝑎𝑥

∗ (𝐴. 5.7) 

Characteristic distance of the exponential decay ∆𝑈𝑑𝑎𝑚(𝜇 ): 

Δ𝑈𝑑𝑎𝑚(𝑃𝑐𝑒𝑚 
) = Δ𝑈𝑓(𝑃𝑐𝑒𝑚 

) (𝐴. 5.8)   

Table 16. Numerical variables are used to calculate the different parameters. 𝐻𝑑 is the change in height dilatancy 

at the end of the Gaussian.  𝐻𝑑−𝑓𝑖𝑛𝑎𝑙 is the total change in height dilation. k, 𝜇𝑆𝑆
∗ , and ∆𝑈𝑓𝑝𝑝 do not depend on 

cementation and are taken as constant. 

Variable Value 

 DENSE MID-DENSE 

[𝐶 in, 𝐶  x] [25 %, 75 %] 

[𝐶 in−2 , 𝐶  x−2] [1 %, 75 %] 

𝜇𝑠𝑠
∗  0.45 

Ψp− in 20°     8° 

Ψp−  x 40°     25° 

𝑈𝑑𝑝𝑣𝑎𝑙
 [100, 50, 50] (𝜇 ) [250, 50, 50] (𝜇 ) 

𝐻𝑑 [140, 200, 150] (𝜇 ) [70, 95, 120] (𝜇 ) 

𝐻𝑑−𝑓𝑖𝑛𝑎𝑙 [140, 0, 80] (𝜇 ) [70, 0, 60] (𝜇 ) 

𝑘 140 000 kN/m 80 000 kN/m 

𝜇𝑓𝑝_𝑣𝑎𝑙
∗  [0.2,3] [0.12, 0.6] 

𝜇𝑓𝑝𝑝_𝑣𝑎𝑙
∗  [0.45,0.95] [0.2, 0.25] 

ΔUfpp 8 𝜇  40 𝜇  

ΔU = ΔUf = Δ𝑈𝑑𝑎𝑚 [100, 50] 𝜇  [50,50] 𝜇  

𝜇𝑑𝑝_𝑚𝑎𝑥
∗  0.5 0.4 
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C. Simplified model validation (part B) 

 

Figure 151. Proposed simplified models - Evolution of friction contributions as a function of the initial percentage 

of cementation for mid-dense materials. 
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Figure 152. Proposed simplified models - Evolution of friction contributions as a function of the initial percentage 

of cementation for dense materials. 
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D. Method to measure shear bands aperture (part C) 

• Measure of the 𝚫𝒀 𝒑𝒆  opening of each R or Y -band 

 

- Collection of particles around the R-band (~ 10 to 20 on each side) with the software 

  r   ew   d          o  o    e or e     o      e  α   e wee    e  or zo       e        d 

the direction of the R-band (angle compared to the measured data), Figure 153 (a). 

- Projection of the position of selected cells in the reference mark of the R-band (RB =

(0, xR⃗⃗⃗⃗ , yR⃗⃗⃗⃗ )), with an offset in the y-direction to take the displacement of the center of the 

reference mark 𝑡ℎ𝑖 into account, Figure 153 (b). 

- Addition of linear interpolation to have an x-alignment of the points on each side of the fault 

 w    ‘     ’ o   o              Figure 154. 

- Calculation of the needed values from the collected data. ∆∆𝑦   is the relative displacement 

in the 𝑦𝑅 −direction for each time step. It is calculated as 

∆Yop n = ∆∆𝑦  = (𝑦 𝑖
− 𝑦𝐴𝑖

) − (𝑦 0
− 𝑦𝐴0

) (𝐴. 5.9) 

to consider the displacement of both particles within the gouge. With the same method, we 

calculate the relative displacement in the 𝑥𝑅 −direction, 

∆X lip = (𝑥 𝑖
− 𝑥𝐴𝑖

) − (𝑥 0
− 𝑥𝐴0

) (𝐴. 5.10) 

Both variables are observed in Figure 155. The graph of the ∆Yop n as a function of ∆X lip 

will give the trajectory of each band. 

 
Figure 153. (a) Selected points in the reference mark  0 = (0, 𝑥0⃗⃗⃗⃗ , 𝑦0⃗⃗⃗⃗ ). (b) Selected points projected in the R-band 

mark   = (0, 𝑥𝑅⃗⃗⃗⃗ , 𝑦𝑅⃗⃗⃗⃗ ). Points color coded with their position with the fault slip distance from 0 to 0.5 mm. 
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Figure 154. Linear interpolation of the position of cells in the R-band mark   , for each time step. 

 

Figure 155. Schema of the method used to measure the Riedel band opening. We first select points on each part of 

the interested band and measure the vertical displacement perpendicular to the band direction, called ∆∆𝑦𝑖. The 

same method is applied on the displacement in the band direction, ∆∆𝑥𝑖 . 

• Measure of the 𝑹𝒕𝒉𝒊 𝒌 𝒆𝒔𝒔 with ImageJ 

With the software ImageJ, the thickness of each Riedel band was measured manually. The main 

steps are the following:  

- Recover Field images from MELODY, showing Solid fraction evolution at each time step. 

- Application of a filter to threshold only a certain solid fraction value in the software 

Paraview. For example, we only extracted zones of high solid fraction (from 0.95 to 1). 

(Figure 156) 
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- Transformation of the images in .png or .jpg that it is possible to open with ImageJ.  

- Manual measurement of the  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 of each selected band, Figure 157. 

This is a long way method, but it enables us to have the first idea on R-band temporality for 

three different simulations and to have an average value of the width  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 of R and Y-

bands.  

 
Figure 156. Image of the M-S sample with a filter on the solid fraction to threshold the solid fraction from 0.95 to 

1. 

 
Figure 157. (a) Effective friction 𝜇∗ as a function of the slip distance (mm) M-S materials. (b)  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 measured 

with ImageJ as a function of the slip distance (mm).  

E. Thin bands results (Part C) 

This appendix presents the friction and dilation results for the small gouges generated for 

Chapter 5. Data are also used with the graph of Chapter 4 to represent a gouge layer without 

shear localization. Figure 158 gathers all the results in a graph of the effective friction as a 

function of the interparticle friction. Figure 159, Figure 160, Figure 161 present the total 

effective friction curve with the associated dilation for all the thin gouges tested, listed in table 

Figure 158. 
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Figure 158. Effective friction 𝜇∗ as a function of the interparticle friction for all the thin bands. Cross for the peak 

of effective friction and stars for steady-state effective friction. In the table, sample names and associated 

modification with standard case (M-SG-S). Size of the samples 20 × 0.2   ². 

 
Figure 159. Effective friction 𝜇∗ and dilation 휀𝑦 (%) as a function of the slip distance (m) for different values of 

the interparticle stiffness 𝑘𝑛, for thin band models (20 × 0.2   ²). 

 
Figure 160. Effective friction 𝜇∗ and dilation 휀𝑦 (%) as a function of the slip distance (m) for different values of 

perturbation 𝑃𝑖 , for thin band models (20 × 0.2   ²). 
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Figure 161. Effective friction 𝜇∗ and dilation 휀𝑦 (%) as a function of the slip distance (m) for different value of 

interparticle friction 𝜇𝑛 𝑚 = (0.1, 0.2, 0.3, 0.6), for thin band models (20 × 0.2   ²). 
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Nomenclature 

The indicated chapter concerns the first chapter where the parameter was defined, but it can be 

used in other chapters. 

𝐴𝑛 Pair Fourier coefficient, morphologic descriptors, (Chap. 2) 

 𝑛 Odd Fourier coefficient, morphologic descriptors, (Chap. 2) 

𝐶  
  Cohesion in the sense of Mohr-Coulomb, (Chap. 1) 

𝐶𝑛 𝑚 
  Numerical interparticle cohesion (Pa), (Chap. 2) 

𝐶𝑛 𝑚−100% Numerical interparticle cohesion (Pa) for complete cementation, (Chap. 3) 

𝐷   Fractal Dimension factor, (Chap. 1) 

𝐷𝑐 
  Critical slip distance (m), (Chap. 1) 

𝐷𝑛 Normalized amplitude for Fourier descriptors, (Chap. 2) 

𝐷𝑝  Total displacement before friction peak (m), from zero displacement, (Chap 3.) 

𝐷𝑝𝑝  Slip weakening part (m), similar to Dc, (Chap 3.) 

𝐷𝑠 
  End of slip displacement (m), (Chap 5.) 

𝑑𝑦  𝑦-displacement of the upper rock wall (m), (Chap. 4) 

𝐸  Elasticity moduli 𝐸 (Pa), (Chap. 3) 

𝐸𝐶𝑒𝑚 The energy of de-cementation (J/m²), (Chap. 3) 

𝐸𝐷𝑎𝑚       e e er     / ²   suffix -pp for post-peak,           

𝐸𝐷𝑖𝑙        o  e er     / ²   suffix -pp for post-peak,           

𝐸𝐷𝑖𝑙−𝑎𝑣    er  e  o    e k d     o  e er     / ² ,           

𝐸𝑓   r    o    e er     / ²   suffix -pp for post-peak,           

𝐸𝑓𝑐   o         r  o    e  r    o    e er     / ²    o  o   e er  ,           

𝐸𝑓𝑟   e         r    o    e er     / ²             

𝐸𝐺  Breakdown energy, energy needed to weaken the fault (J/m²),           

𝐸𝐻 Heat or frictional energy (J/m²),           

𝐸𝑅 Radiated energy (J/m²) ,           

𝐸𝑆 Representative surface energy (J/m²), (Chap. 3) 

𝐸𝑡𝑜𝑡 Total energy generated by gouge sliding (J/m²),           

𝑒 Chosen parameter around 1/50 for time step calculation, (Chap. 2) 

𝐹𝐴
⃗⃗⃗⃗   Resultant of forces acting on a particle A, (Chap. 2) 

𝐹𝑁  Total normall force (N) on the upper rock wall (𝑦-direction), (Chap. 2) 

𝐹𝑠  Solid fraction,  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ( 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 +  𝑣𝑜𝑖𝑑𝑠)⁄  

𝐹𝑇  Total tangential force (N) on the upper rock wall (𝑥-direction), (Chap. 2) 

𝐹𝑣  Voids fraction,   𝑣𝑜𝑖𝑑𝑠 ( 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 +  𝑣𝑜𝑖𝑑𝑠)⁄  

G  Shear modulus (GPa), (Chap. 4) 

 𝑝  Inertial number, (Chap. 2) 

𝐾  Stiffness of the loading system (GPa/m), (Chap. 5) 

𝐾𝑐   r            we ke       o e (GPa/m), (Chap. 1) 

𝑘   Gouge layer stiffness, (         
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𝑘𝑒𝑞         e      er  r    e       e      /              

𝑘𝑛  Nor       er  r    e       e      /    (Chap. 2) 

𝑘𝑡      e         er  r    e       e      /    (Chap. 2) 

𝐿𝑐  Critical nucleation length (m), (Chap. 5) 

𝐿𝑔  Length of the numerical gouge sample (m), (Chap. 2) 

𝐿𝑝−𝑐  Contact length between two particles (m), (Chap. 2) 

 𝐴  Mass of a particle from a grain A (kg), (Chap. 2) 

 𝑚𝑖𝑛  Mass of the smallest particle (kg), (Chap. 2) 

N  N   er o    r    e  w        e numerical gouge sample, (Chap. 2) 

 𝑖  N   er o   o     w        e  o  o r o      r    e  (Chap. 2) 

 𝑂𝑝𝑡𝑖𝑚 Optimization parameter between 0 and 63  (Chap. 2) 

𝑛  Number of contact bonds for each particle, (Chap. 3) 

𝑛𝑏1 Ratio between 𝑡ℎ𝑖  (m) and equivalent diameter  𝑒𝑞 (m) of particles, (Chap. 4) 

𝑛𝑆𝑑 Ratio between  𝑑 (m) and  𝑒𝑞 (m), (Chap. 4) 

𝑛𝑌 Ratio between 𝑑𝑦 (m) and  𝑒𝑞 (m) of particles. (Chap. 4) 

P Primary shear, (Chap. 1) 

𝑃𝑖 Perturbation parameter (regularity of shape of particles), (Chap. 2) 

𝑃𝑐𝑒𝑚  Surface percentage of cementation within the gouge sample (%), (Chap. 3) 

𝑃𝑔𝑟𝑎𝑖𝑛𝑠  Surface percentage of angular grains within the gouge sample, (Chap. 4) 

𝑃𝑗 Per  e er o      r    e “j”               

𝑃𝑚𝑎𝑡𝑟𝑖𝑥 Surface percentage of matrix particle within the gouge sample, (Chap. 4) 

𝑃𝑝𝑜𝑟𝑒  Surface percentage of porosity within the sample = 100 ∗ 𝐹𝑣, (Chap. 2) 

R Riedel shear bands in the R-orientation, (Chap. 1) 

 ′ Antithetic (or conjugate) Riedel shears in the R’ orientation, (Chap. 1) 

 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 Thickness of a Riedel band (m), (Chap. 5) 

 0  Averaged grain radius used (m), (Chap. 2) 

    Signal of the grain radius, (Chap. 2) 

    Total Voronoï cell area ( 2), (Chap. 2) 

 𝑑  Slip distance (m), (Chap. 4) 

 𝑔 Gouge area perpendicular to the applied normal stress ( 2),  ( 𝑔 = 𝐿𝑔 × 1 (2D)) 

 𝑔𝑟𝑎𝑖𝑛𝑠−𝑒𝑞 𝑖𝑣 Total equivalent angular grains area within the gouge ( 2), (Chap. 4) 

 𝑚𝑎𝑡𝑟𝑖𝑥−𝑒𝑞 𝑖𝑣 Total matrix particles area within the gouge ( 2), (Chap. 4) 

 𝑝  Total area of one particle ( 2), (Chap. 2) 

 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 Total particles area within the gouge ( 2), (Chap. 2) 

 𝑣𝑜𝑖𝑑𝑠  Total voids area within the gouge ( 2), (Chap. 2) 

th  Thickness of the numerical granular gouge model (m), (Chap. 2) 

thi  Initial thickness of the numerical gouge sample (m), (Chap. 2) 

𝑈𝑑𝑝 Slip distance corresponding to the maximum dilatancy ( ), (Chap. 5) 

𝑈𝑒𝑛𝑑 Slip distance at the end of the simulation ( ), (Chap. 5) 

𝑈𝑝 Slip distance at the effective friction peak ( ), (Chap. 5) 

V Initial shearing velocity applied on the upper rock wall (m/s), (Chap. 2) 
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𝑉𝑦  Downwards velocity used for biaxial numerical experiments (m/s), (Chap. 3) 

𝑥𝐴⃗⃗⃗⃗   Position vector of a particle A, (Chap. 2) 

Y Boundary shear bands, (Chap. 1) 

𝛾𝑛  Nor       er  r    e d        (Chap. 2) 

𝛾𝑡      e         er  r    e d      , (Chap. 2) 

𝛾𝑥𝑦  Shear strain 𝛾𝑥𝑦 = Δ𝑥/𝑡ℎ𝑖, (Chap. 5) 

�̇�  Shearing rate 

Δ𝑡  DEM current and constant time step (s), (Chap. 2) 

Δ𝑡−𝑐𝑜𝑛𝑡𝑎𝑐𝑡 Proximity updating period (s), (Chap. 2) 

∆𝑡ℎ   y displacement of the upper rock wall (m), (Chap. 2) 

Δ𝑥  x displacement of the upper rock wall or slip distance (m), (Chap. 5) 

∆𝐻𝑑  Gain in gouge thickness (m), (Chap. 5) 

∆𝑈𝑓   Characteristic distance of the exponential decay, (Chap. 5) 

∆𝑊 Total energy budget (J/m²), (Chap. 5) 

∆ 𝑠𝑙𝑖𝑝   The variation in the  𝑅-direction, Slip within each band (m), (Chap. 5) 

∆ 𝑜𝑝𝑒𝑛  The variation in the  𝑅-direction, opening of each band (m), (Chap. 5) 

∆ 𝑜𝑝𝑒𝑛−𝑎𝑣  Average opening for a specific slip distance of the total fault (m), (Chap. 5) 

𝛿𝑛  Nor       er  r    e          (Chap. 2) 

𝛿𝑡      e         er  r    e          (Chap. 2) 

𝛿𝑑𝑒𝑡𝑒𝑐        o    e    er  r    e          (Chap. 2) 

휀𝑦 Vertical dilation of the granular model (휀𝑦 = Δ𝑡ℎ 𝑡ℎ𝑖⁄ ) in %, (Chap. 2) 

𝛼𝑖  Angle orientation of R-bands (°), (Chap. 1) 

𝜇  
   oe     e   o   r    o    ro    o  o ’    w    (Chap. 1) 

𝜇 
∗
 
 
 Effective friction (ratio of the shear stress under normal stress), (Chap. 2) 

𝜇𝑎 
 

 

  Apparent friction (From Riedel shears (Lockner & Byerlee, 1993)), (Chap. 3) 

𝜇 
∗
𝑑𝑎𝑚 

 
 Damage contribution of effective friction, (Chap. 5) 

𝜇 
∗
𝑑𝑖𝑙  

 
 Dilation contribution of effective friction, (Chap. 5) 

𝜇𝑑𝑝
∗  Maximum friction induced by rupture of cementation, (Chap. 5) 

𝜇𝑓
∗

 

 
 Frictional contribution of effective friction, (Chap. 5) 

𝜇𝑓𝑝
∗  Peak friction at the end of the elastic phase, (Chap. 5) 

𝜇𝑓 
 

 

  Coefficient of friction (From Mohr-Coulomb definition), (Chap. 1) 

𝜇𝑛 𝑚 Interparticle friction, (Chap. 2) 

𝜇𝑝
∗
 

 

 

 
 Effective friction peak, (Chap. 2) 

𝜇𝑠𝑠
∗  Effective friction at steady-state, (Chap. 2) 

𝜈  Poisson coefficient, (Chap. 5) 

𝜌𝑝   Particle density (𝑘𝑔/ 3), (Chap. 2) 

𝜌𝑟  Rock density (𝑘𝑔/ 3), (Chap. 2) 

𝜎1 Maximum principal stress (Pa), (Chap. 1) 

𝜎3 Mimimum principal stress (Pa), (Chap. 1) 

𝜎𝑒𝑓𝑓  Effective stress, 𝜎𝑒𝑓𝑓 = 𝜎𝑛 − 𝑃𝑓 
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𝜎𝑁  Normal stress applied on the upper rock wall (MPa), (Chap. 2) 

𝜎𝑛 
  Contact normal stress between two particles (MPa), (Chap. 2) 

𝜎𝑡 
  Contact tangential stress between two particles (MPa), (Chap. 2) 

𝜏  Shear stress between the gouge and the upper rock (MPa), (Chap. 2) 

𝜏𝑝  Maximum shear stress (MPa), (Chap. 5) 

𝜏𝑠𝑠  Steady-state shear stress (MPa), (Chap. 5) 

𝜑   Internal friction angle in the sense of Mohr-Coulomb, (Chap. 1) 

 𝑎𝑣   Average particle diameter (m), (Chap. 2) 

 𝑒𝑞 
  Particle equivalent diameter (m), (Chap. 2) 

 𝑚𝑎𝑥  Particle maximum diameter (m), (Chap. 2) 

 𝑚𝑖𝑛  Particle minimum diameter (m), (Chap. 2) 

Ψ𝑝 Maximum dilatancy angle (°), (Chap. 5) 
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