
1 INTRODUCTION 

The response of a geotechnical structure sub-
jected to a seismic loading has been extensively in-
vestigated in literature using deterministic approach-
es where average values of the soil properties (shear 
modulus, angle of internal friction, cohesion, etc.) 
were used. Notice however that the spatial variabili-
ty of the soil properties may affect the behavior of 
geotechnical structures. Consequently, reliable res-
ponses of a geotechnical system cannot be predicted 
using a deterministic approach; a probabilistic tech-
nique seems to be necessary. The probabilistic tech-
niques enable the rigorous propagation of the differ-
ent uncertainties from the input parameters to the 
system responses. It should be emphasized here that 
few authors have worked on the analysis of the 
seismic responses using probabilistic approaches 
[e.g. Koutsourelakis et al. (2002), Nour et al. (2003), 
Popescu et al. (2005) and Lopez-Caballero and 
Modaressi-Farahmand-Rasavi (2010)]. This is be-
cause of the significant computation time required 
per simulation when using finite element/finite dif-
ference dynamic models.  

In this paper, the effect of the soil spatial variabil-
ity on the seismic responses of geotechnical struc-
tures is investigated. Given the scarcity of studies 
involving the probabilistic seismic responses, the 
case of a free field elastic soil medium subjected to a 
seismic loading was considered. The aim is to inves-
tigate the effect of the soil spatial variability on the 

maximal acceleration at the ground surface. The soil 
shear modulus was considered as a one-dimensional 
non-Gaussian random field where it is assumed to 
vary in the vertical direction. It was described by a 
square exponential autocorrelation function and was 
assumed to be log-normally distributed. The deter-
ministic model was based on numerical simulations 
using the dynamic option of the FLAC3D software. 
As for the probabilistic methods used in this paper, 
two methods were employed. The first one is the 
classical Monte Carlo Simulation (MCS) methodol-
ogy. Because of the high computational cost of the 
deterministic dynamic model, a relatively small 
number of calls of the deterministic model was used 
and thus, the outcomes were only the first two statis-
tical moments of the system response (not the failure 
probability). The second probabilistic method is the 
Sparse Polynomial Chaos Expansion (SPCE) me-
thodology which consists in substituting the com-
plex deterministic model by a meta-model and per-
forming MCS on this meta-model (for the 
computation of the failure probability). The aim of 
the use of the SPCE methodology in the present pa-
per is to check its capability to handle the probabilis-
tic analysis of a dynamic problem. Notice finally 
that the main objective of the present paper is to de-
termine the influence of the soil statistical parame-
ters (i.e. coefficient of variation and autocorrelation 
distance of the soil uncertain parameter) on the sta-
tistical moments of the dynamic system response 
(maximum acceleration at the ground surface).      

The paper is organized as follows: one first 
presents the deterministic numerical modeling of the 
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dynamic problem and the corresponding results. 
Then, the probabilistic analyses and the correspond-
ing probabilistic results are presented and discussed. 
The paper ends by a conclusion of the main findings. 

2 DETERMINISTIC ANALYSIS 

In this section, the deterministic numerical model 
is firstly presented. It is followed by the correspond-
ing deterministic results. 

2.1 Numerical modeling  
The deterministic model is based on numerical 

simulations using the dynamic option of the finite 
difference code FLAC3D. A soil column of unit 
width and of 24m depth is considered for the simula-
tion of a free field soil mass of depth equal to 24m. 
This is because the soil column is sufficient to simu-
late the propagation of the seismic waves in a homo-
geneous soil and to deduce the distribution of the 
peak acceleration as a function of depth. The input 
seismic signal used in this work is the synthetic sig-
nal of Nice for which the corresponding accelero-
gram is presented in Figure 1(a). This signal is used 
because it is representative of the French design 
spectrum [Grange (2008)]. It has a maximum accele-
ration equal to 0.33g. Its corresponding Fourier am-
plitude spectrum is shown in Figure 1(b). 

Figure 1. (a) Accelerogram of the synthetic signal of Nice and 
(b) the corresponding Fourier amplitude spectrum 
 

In the finite difference dynamic analysis by 
FLAC3D, numerical distortions may occur during the 
propagation of the seismic waves if the elements 
size of the mesh is not convenient. The size ∆l of an 
element of the mesh should respect the following 
condition [Itasca (2000)]: 

max10*
sVl
f

∆ ≤  (1) 

where Vs is the shear wave velocity, and fmax is the 
maximum frequency of the incident seismic signal 
[Kuhlemeyer and Lysmer, (1973)]. The shear wave 
velocity Vs in Equation (1) can be calculated using 
the values of the soil shear modulus G and the soil 
density ρ as follows: 

s
GV
ρ

=  (2) 

Even though an elasto-plastic model would be more 
realistic to model the soil behavior especially for the 
cases of medium and high earthquake GMs, an elas-
tic model was used in this work. The aim is to inves-
tigate the effect of the soil spatial variability using a 
simple model with a reasonable computation time. 
Concerning the boundary conditions, FLAC3D offers 
the option of applying absorbing boundary condi-
tions of type "quiet boundaries" or "free field". 
These boundary conditions absorb the energy of the 
wave approaching these limits and thus avoid the 
reflection of these waves. In this paper, the boundary 
conditions applied to the vertical boundaries are of 
type "free field". This type of boundary conditions is 
suitable for vertical surfaces while the boundary 
conditions of type "quiet boundaries" are generally 
convenient in the case of horizontal surfaces. Final-
ly, it should be mentioned that in the natural dynam-
ic systems, the internal friction may lead to partial 
dissipation of the energy of vibration. The software 
FLAC3D provides a damping of type "Rayleigh 
damping" (among other types of damping) which is 
based on two parameters (i) the natural frequency of 
the system and (ii) the damping ratio (defined as a 
percentage of the critical damping). This type of 
damping is used in this paper.  

2.2 Deterministic results 
For the dynamic analyses, the values of the shear 

modulus, bulk modulus and density of the soil were 
as follows: G=100MPa, K=250MPa, and ρ=1800 
kg/m3. In order to avoid the numerical distortion that 
may occur during the propagation of the seismic 
waves in the model, the elements size must satisfy 
Equation (1). By using Equation (2), the shear wave 
velocity was found to be equal to 235.7m/s. From 
Figure 1(b), one can see that the maximal frequency 
fmax is equal to 40Hz. Thus, the maximum size of the 
different elements must be less than or equal to 
0.59m. In the studied model, the size ∆l of the dif-
ferent elements was taken equal to 0.5m. Concerning 
the boundary conditions, boundary conditions of 
type "free field" were applied along the vertical 
boundaries of the model. The lower horizontal 
boundary was subjected to the seismic load (i.e. the 
synthetic accelerogram of Nice). As for the parame-
ters of the Rayleigh damping, a central frequency 
(natural frequency) fc=2.5Hz and a damping ratio 
equal to 5% of the critical damping were used. No-
tice that the approximate formula of the natural fre-
quency of a soil column given by Widmer (2003) 
(i.e. fc=Vs/4H where H is the height of the soil col-
umn) was employed to calculate the value of the 
central frequency.  
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Figure 2 shows the values of the maximum acce-
leration at the top of the soil column as a function of 
the shear modulus G (the range of values of G con-
sidered in this curve is that corresponding to a shear 
velocity varying between 200m/s and 900m/s). This 
curve was found (as expected) independent of the 
value of K because one is dealing here with only 
shear deformations (not volumetric deformations) 
induced by the seismic shear waves which dominate 
the strong shaking phase. From this figure, one can 
notice that large amplifications were obtained for the 
values of G that lie between 162MPa and 
1012.5MPa. This amplification decreases outside 
this range of values. In order to explain the signifi-
cant values of the amplification, one should refer to 
the Fourier amplitude spectrum of the input seismic 
signal shown in Figure 1(b). From this figure, one 
can see that the predominant frequency band is be-
tween 3Hz and 9Hz. By using the approximate for-
mula of the natural frequency of a soil column given 
by Widmer (2003) (i.e. fc=Vs/4H), one may show 
that for the values of G comprised between 162MPa 
and 1012.5MPa, the band of predominant frequen-
cies of the soil column coincides with the predomi-
nant frequency band of the input seismic signal. This 
coincidence leads to the so-called 'phenomenon of 
resonance' which induces the significant amplifica-
tion. 
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Figure 2. Maximum acceleration at the top of the column ver-
sus the shear modulus G 

3 PROBABILISTIC MODELS 

The aim of this section is to present the probabil-
istic dynamic analysis. The impact of the soil spatial 
variability on the dynamic response was considered. 
It should be remembered here that the dynamic sys-
tem response involves the maximum acceleration 
(Amax) at the ground surface. The soil shear modulus 
G was modeled as a one-dimensional non-Gaussian 
random field. The EOLE methodology [Li and Der 
Kiureghian (1993)] was used to discretize the shear 
modulus random field (i.e. to obtain realizations of 
the soil shear modulus that respect the correlation 
structure of this field). For the one-dimensional ran-
dom field used in this paper, the shear modulus was 
allowed to vary only in the vertical direction. The 

deterministic model was based on numerical simula-
tions using the finite difference code FLAC3D. As 
for the probabilistic methods used in this paper, two 
methods were employed. The first one is the classic-
al crude Monte Carlo Simulation (MCS) methodolo-
gy and the second one is the Sparse Polynomial 
Chaos Expansion (SPCE) methodology which con-
sists in substituting the complex deterministic model 
by a meta-model and performing MCS on this me-
tamodel.      

In this section, the EOLE method of discretisation 
of random fields was firstly presented. It is followed 
by a brief presentation of the crude Monte Carlo me-
thod and the SPCE methodology used for the proba-
bilistic analysis. 

3.1 Discretization of a non-isotropic log-normal 
random field 

Consider a 2D non-isotropic log-normal random 
field ZLN described by: (i) a log-normal marginal 
cumulative distribution function FG, and (ii) a square 
exponential autocorrelation function LN

Zρ [(x, y), (x', 
y')] which gives the values of the correlation be-
tween two arbitrary points (x, y) and (x', y'). Notice 
that this function is given as follows: 

22
' '
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Z

LN

x y

x x y y
x y x y
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⎛ ⎞⎛ ⎞⎛ − ⎞ −⎜ ⎟= − − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
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where ax and ay are the autocorrelation distances 
along x and y respectively. The EOLE method pro-
posed by Li and Der Kiureghian (1993) to discretize 
a random field is used herein. In this method, one 
should first define a stochastic grid composed of s 
grid points (or nodes) and determine the log-normal 
autocorrelation matrix 

;

LN
χ χ

Σ  which gives the correla-
tion between each grid point of the stochastic mesh 
and the other grid points of this mesh using Equation 
(3). The log-normal autocorrelation matrix 

;

LN
χ χ

Σ  
should then be transformed into the Gaussian space 
using the Nataf transformation [cf. Nataf (1962)]. As 
a result, one obtains a Gaussian autocorrelation ma-
trix ;

G
χ χΣ  that can be used to discretize the Gaussian 

random field Z as follows: 

( , );ln ln
1

( , ) . .
Z x y

N
j

Z Z j
j j

Z x y µ
χ

ξ
σ φ

λ=

≅ + Σ∑%  (4) 

where µlnZ and σlnZ are the mean and standard devia-
tion values of the underlying normal distribution 
(i.e. ln(Z)); ( ,j jλ φ ) are the eigenvalues and eigen-
vectors of the Gaussian autocorrelation matrix ;

G
χ χΣ ; 

( , );Z x y χΣ  is the correlation vector between the value 
of the field at an arbitrary point (x, y) and its values 
at the different grid points; jξ (j=1, …, N) is a vector 
of standard normal random variables; and N is the 
number of terms (expansion order) retained in EOLE 
method. This number N is obtained (i) by sorting the 



eigenvalues jλ  (j=1, …, s) in a descending order 
and (ii) by choosing the number N of eigenmodes 
that leads to a variance of the error which is smaller 
than a prescribed tolerance ε ( 10%ε ≈  in this pa-
per). Notice that the variance of the error for EOLE 
is given by Li and Der Kiureghian (1993) as fol-
lows: 

( )( )2
2
ln ( , );

1

( , ) ( , )

11
N T

Z j Z x y
j j

Var Z x y Z x y

χσ φ
λ=

⎡ ⎤− =⎣ ⎦
⎧ ⎫⎪ ⎪− Σ⎨ ⎬
⎪ ⎪⎩ ⎭

∑

%

 (5) 

where ( , )Z x y and ( , )Z x y% are respectively the 
exact and the approximate values of the random 
field at a given point (x, y) and ( )Tjφ is the trans-
pose of the eigenvector jφ . Once the Gaussian ran-
dom field is obtained, it should be transformed into 
the log-normal space by exponentiating the approx-
imated Gaussian random field ( , )Z x y%  given by 
Equation (4). 

3.2 Monte Carlo method 
The Monte Carlo simulation method consists in 

generating K samples which respect the joint proba-
bility density function fX(X) of the M random va-
riables (X1, …, XM) gathered in a vector X. For each 
sample, the system response is calculated. Thus; for 
the K samples, one obtains K values of the system 
response gathered in a vector ( ) ( ){ }(1) ( ),..., KX XΓ = Γ Γ  
which may be used to determine (i) the estimators of 
the first two statistical moments of the system re-
sponse and (ii) the failure probability for a pre-
scribed threshold of this system response. A very 
large number of realizations is required to obtain a 
rigorous value of the failure probability especially 
when computing small failure probabilities. Notice 
however that a smaller number of simulations is re-
quired for the computation of the first two statistical 
moments of the system response.  

3.3 Sparse Polynomial Chaos Expansion (SPCE) 
methodology 

The polynomial chaos expansion methodology al-
lows one to approximate a complex deterministic 
model by a meta-model. Thus, the system response 
may be calculated (when performing the probabilis-
tic analysis by MCS) using a simple analytical equa-
tion. This method was shown in the static (non-
dynamic) problems [cf. Blatman and Sudret (2010) 
and Mollon et al. (2011)] to provide satisfactory 
probabilistic results concerning not only the first two 
statistical moments of the system response, but also 
the small failure probabilities encountered in geo-
technical engineering (i.e. those that lie in the range 
10-3-10-4). Furthermore, it significantly reduces the 
number of calls of the deterministic model required 

by the crude MCS methodology (presented in the 
previous section) when computing a failure proba-
bility. Within the PCE methodology, the system re-
sponse Γ of a model with M random variables can be 
expressed by a PCE (i.e. an analytical equation) as 
follows: 

1

0 0
( ) ( ) ( )

P

PCE a aβ β β β
β β

ξ ξ ξ
∞ −

= =

Γ = Ψ ≅ Ψ∑ ∑  (6) 

where P is the number of terms retained in the trun-
cation scheme, { } 1,....,i i M

ξ ξ
=

=  is a vector of M in-
dependent standard random variables that represent 
the M random variables, aβ are unknown coefficients 
to be computed and βΨ  are multivariate Hermite 
polynomials. The coefficients aβ of the PCE may be 
efficiently computed using a non-intrusive technique 
where the deterministic calculations are done using 
for example a finite element/finite difference soft-
ware treated as a black box. The most used non-
intrusive method is the regression approach (Blat-
man and Sudret, 2010). This method is used in the 
present work. It should be noticed that the number of 
the PCE coefficients to be computed grows dramati-
cally with the size M of the input random vector and 
the PCE order p. When dealing with a random field 
as is the case in the present paper (and especially 
when considering small values of the autocorrelation 
distances), the discretization of the random field 
may lead to a significant number of random va-
riables which makes the determination of the PCE 
coefficients unfeasible because of the significant in-
crease in the number of calls of the deterministic 
model. To address such problem, the sparse poly-
nomial chaos expansion methodology developed by 
Blatman and Sudret (2010) is used herein. Within 
this methodology, a truncation strategy (called the 
hyperbolic truncation scheme) that retains only the 
significant terms of the PCE is used [for more details 
see Blatman and Sudret (2010)]. The proposed 
SPCE methodology leads to a sparse polynomial 
chaos expansion that contains a smaller number of 
unknown coefficients which can be calculated from 
a reduced number of calls of the deterministic mod-
el. In order to achieve the numerical stability of the 
regression problem, the minimal number of calls of 
the deterministic model must be selected in such a 
way that the matrix of the linear system of equations 
of the regression problem is well conditioned. No-
tice also that the quality of the output approximation 
via a SPCE closely depends on the SPCE order. To 
ensure a good fit between the meta-model and the 
true deterministic model (i.e. to obtain the optimal 
SPCE order), one successively increases the SPCE 
order until a prescribed accuracy was obtained. In 
this paper, the coefficient of determination Q2 is 
used (see Blatman and Sudret 2010). This coeffi-
cient of determination is more efficient than the 
classical coefficient of determination R2 since it al-



lows one to check the capability of the meta-model 
of correctly predicting the model response at any 
point which does not belong to the experimental de-
sign. 

3.4 Probabilistic dynamic results 
The aim of this section is to study the effect of 

the soil spatial variability on the statistical moments 
of Amax at the top of the soil column using both the 
MCS and the SPCE methodologies. In both cases, 
the soil shear modulus G was considered as a one-
dimensional (1D) non-Gaussian random field vary-
ing in the vertical direction. It was described by a 
square exponential autocorrelation function and was 
assumed to be log-normally distributed. Two refer-
ence mean values of the shear modulus were consi-
dered. The first one is 

1
72G MPaµ =  corresponding 

to a non-resonant value (this value is located on the 
left hand part of the curve in Figure 2) and the 
second one is 

2
288G MPaµ =  corresponding to a re-

sonant value. For both cases, a coefficient of varia-
tion equal to 30% was considered as a reference val-
ue. As in the deterministic analysis, a soil column of 
unit width was considered. This is because in the 
present case, the soil exhibits spatial variability only 
in the vertical direction. The probabilistic dynamic 
results for different values of the input governing pa-
rameters are presented in the two following sections.  

3.4.1 Monte-Carlo simulation results 
In this section, the results obtained based on 

Monte-Carlo simulation (MCS) methodology are 
presented and discussed. It should be mentioned 
here that the number of simulations K to be used 
should be sufficient to accurately calculate the first 
two statistical moments. This number should insure 
the convergence of the mean estimator of Amax at the 
top of the soil column and its corresponding coeffi-
cient of variation as a function of the number of si-
mulations. Figure 3 shows that the convergence is 
reached for a number of simulations larger than 300. 
A number of simulations K=500 was used hereafter 
to perform the probabilistic analysis using the MCS 
method. 

Figure 3. (a) Mean and (b) coefficient of variation of Amax at 
the top of the soil column as a function of the number of simu-
lations when ay=0.5m 

 

3.4.1.1 Effect of the mean value and the autocorrela-
tion distance of the soil shear modulus  

The effect of the soil spatial variability on Amax at 
the top of the soil column is studied and presented in 
Table 1 for the two mean values of the shear mod-
ulus (

1
72G MPaµ =  and 

2
288G MPaµ = ) when 

COVG=30%. Different values of the vertical autocor-
relation distance (ay=0.5, 2, 5, 10 and 20m) were 
considered in the analyses.  

Table 1 shows (as in the deterministic analysis) 
that smaller mean values of Amax at the top of the soil 
column were obtained when a non resonant mean 
value of the shear modulus G was used (i.e. 

1
72G MPaµ = ) as compared to those obtained when 

a resonant mean value of the shear modulus G was 
utilized (i.e. 

2
288G MPaµ = ). Notice also that for 

the weak soil configuration (i.e. when 
1

72G MPaµ = ), the mean value of Amax decreases 
when the vertical autocorrelation distance ay de-
creases. This is because the increase in the soil hete-
rogeneity will introduce further strong zones which 
will limit the amplification of the acceleration at the 
top of the soil column. On the contrary, for the 
strong soil configuration (i.e. 

2
288G MPaµ = ), the 

mean value of Amax increases when the vertical auto-
correlation distance ay decreases. This is because the 
increase in the soil heterogeneity will introduce fur-
ther weakness zones which will increase the ampli-
fication of the acceleration at the top of the soil col-
umn. 

On the other hand, Table 1 shows that the varia-
bility of Amax is maximal for the large value of the 
autocorrelation distance (ay=20m). This variability 
decreases when the vertical autocorrelation distance 
ay decreases. Indeed, the small values of the autocor-
relation distance lead to a rapid change in the values 
of the shear modulus along the wave path. This pro-
duces quasi-similar behavior for all the realizations 
and leads to close values of Amax at the top of the soil 
column (and thus to a smaller variability in this re-
sponse). From Table 1, one can also observe that the 
variability of Amax is larger for the case of the weak 
soil corresponding to a small mean value of the 
shear modulus G (i.e. 

1
72G MPaµ = ). 

 
Table 1. Effect of the soil spatial variability on the maximum 
acceleration at the top of the soil column as obtained from 
MCS 
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1

72G MPaµ =  
2

288G MPaµ =  
ay 
(m) 

 µAmax 
(m/s2) 

 σAmax 
(m/s2) 

COVAmax 
(%) 

 µAmax 
(m/s2) 

 σAmax 
(m/s2) 

COVAmax 
(%) 

0.5 6.08 0.31 5.12 9.82 0.19 1.92 
2 6.19 0.43 6.96 9.76 0.30 3.95 
5 6.29 0.54 8.52 9.65 0.49 5.03 
10 6.35 0.66 10.34 9.60 0.55 5.75 
20 6.38 0.66 10.34 9.53 0.55 5.80 



3.4.1.2 Effect of the coefficient of variation of the 
soil shear modulus 

The aim of this section is to study the effect of 
the coefficient of variation of G on the statistical 
moments of Amax at the top of the soil column for the 
two mean values of G (

1
72G MPaµ =  and 

2
288G MPaµ = ).  

Table 2 shows that the increase in the coefficient 
of variation of G has practically no influence on the 
mean value of Amax. On the other hand, the variabili-
ty of Amax at the top of the column increases (as ex-
pected) when the coefficient of variation of G in-
creases. Finally, notice that the variability of Amax at 
the top of the column reaches the most significant 
values in the case of a weak soil (

1
72G MPaµ = ). 

 
Table 2. Effect of the coefficient of variation of G on Amax at 
the top of the soil column as obtained from MCS  

3.4.2 Sparse polynomial chaos expansion results 
In this section, the results obtained based on the 

sparse polynomial chaos expansion (SPCE) metho-
dology are presented. It should be mentioned here 
that the 500 simulations which were used in the pre-
vious section to perform the analyses by the MCS 
methodology were employed herein in order to con-
struct the SPCE. Additional simulations were per-
formed for the cases where the regression problem 
was ill-posed. However, the number of simulations 
was not increased until reaching the target coeffi-
cient of determination 2

TARGETQ  of 0.999. This is be-
cause of the high computational cost of the dynamic 
analysis.  

3.4.2.1 Effect of the mean value and the autocorrela-
tion distance  

The effect of the soil spatial variability on the 
PDF of Amax at the top of the soil column for the two 
mean values of the shear modulus (

1
72G MPaµ =  

and 
2

288G MPaµ = ) is studied and presented in Fig-
ure 4. This figure shows that the variability of Amax at 
the top of the soil column decreases when the vertic-
al autocorrelation distance ay decreases. Similar ob-
servation was provided in a previous section where 
MCS was employed. Even though these PDFs 
present logical trends, they cannot be considered as 
rigorous. This is because relatively small values of 
the coefficient of determination Q2 were obtained in 
this case where a seismic loading was considered.  

Table 3 presents a comparison between the statis-
tical moments of Amax at the top of the soil column as 
obtained by MCS and by the SPCE methodology. 
This table also provides the values of Q2 obtained 

when the SPCE methodology was used. From Table 
3, one can observe a small difference between the 
first two statistical moments as given by the MCS 
and the SPCE methodologies even though relatively 
small values of Q2 were obtained with the use of the 
SPCE methodology. Thus, the relatively small val-
ues of Q2 may not have a major influence on the two 
first statistical moments, but they certainly affect the 
third and fourth statistical moments. This makes the 
obtained PDFs invalid at the distribution tails. 
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Figure 4. Influence of the vertical autocorrelation distance ay 
on the PDF of Amax at the top of the soil column (as obtained 
from the SPCE methodology) when (a) 

1
72G MPaµ =  and (b) 

2
288G MPaµ =  

 
In fact, there are two possible reasons for which 

relatively small values of Q2 may occur. The first 
one is the chosen system response (i.e. Amax) which 
may be obtained at different time steps from simula-
tion to another one. As for the second reason, it may 
be the number of simulations which needs to be in-
creased. 

In order to detect the main reason for which the 
relatively small values of Q2 were obtained, a test on 
only the chosen system response Amax was per-
formed. This test is presented in Appendix A. It was 
found that the chosen system response is not the rea-
son why one obtains small values of Q2. As for the 
number of simulations, the test was not performed 
because of the significant computation time of the 
dynamic deterministic model (40 min per simula-
tion). As a conclusion, more advanced probabilistic 

 
1

72G MPaµ =  
2

288G MPaµ =  
COVG 

(%) 
 µAmax 

(m/s2) 
 σAmax 

(m/s2) 
COVAmax 

(%) 
 µAmax 

(m/s2) 
 σAmax 

(m/s2) 
COVAmax 

(%) 
15 6.13 0.41 6.61 9.74 0.17 1.78 
30 6.19 0.43 6.96 9.65 0.49 5.03 
45 6.16 0.52 8.42 9.60 0.64 6.70 



methods are needed in the presence of seismic load-
ing where highly non-linear models are involved. 

 
Table 3. Comparison between the statistical moments (µ, σ) of 
Amax at the top of the soil column as obtained by MCS and by 
the SPCE methodology 

 
1

72G MPaµ =  

 Monte-Carlo simula-
tions 

Sparse Polynomial Chaos Ex-
pansion 

ay 

(m) 
 µAmax 

(m/s2) 
 σAmax 

(m/s2) 
COVAmax 

(%) 
 µAmax 

(m/s2) 
 σAmax 

(m/s2) 
COVAmax 

(%) 
Q2 

0.5 6.08 0.31 5.12 6.07 0.23 3.97 0.535 
2 6.19 0.43 6.96 6.18 0.37 6.00 0.587 
5 6.29 0.53 8.52 6.29 0.42 6.68 0.686 
10 6.35 0.65 10.34 6.33 0.54 8.53 0.788 
20 6.38 0.66 10.34 6.37 0.56 8.80 0.790 
 

2
288G MPaµ =  

 Monte-Carlo simula-
tions 

Sparse Polynomial Chaos Ex-
pansion 

ay 

(m) 
 µAmax 

(m/s2) 
 σAmax 

(m/s2) 
COVAmax 

(%) 
 µAmax 

(m/s2) 
 σAmax 

(m/s2) 
COVAmax 

(%) 
Q2 

0.5 9.82 0.19 1.92 9.81 0.14 1.43 0.555 
2 9.76 0.30 3.95 9.76 0.27 2.77 0.665 
5 9.65 0.49 5.03 9.65 0.46 4.77 0.810 
10 9.60 0.55 5.75 9.60 0.50 5.21 0.800 
20 9.53 0.55 5.80 9.53 0.50 5.25 0.750 

4 CONCLUSION 

In this paper, the dynamic response induced by a 
seismic loading taking into account the soil spatial 
variability was investigated. Given the scarcity of 
studies involving the probabilistic seismic responses, 
a free field elastic soil medium subjected to a seis-
mic loading was considered. The aim is to investi-
gate the effect of the soil spatial variability on the 
maximal acceleration at the ground surface using a 
simple model with a reasonable computation time.  

The soil shear modulus G was modeled as a non-
Gaussian random field. The EOLE methodology was 
used to discretize the shear modulus random field. 
The deterministic dynamic numerical model was 
based on numerical simulations using the dynamic 
option of the finite difference software FLAC3D. As 
for the probabilistic methods used in this paper, two 
methods were employed. The first one is the classic-
al Monte Carlo Simulation (MCS) methodology and 
the second one is the Sparse Polynomial Chaos Ex-
pansion (SPCE) methodology which consists in 
substituting the original deterministic model by a 
meta-model and performing MCS on this metamo-
del.  

In the framework of the deterministic analysis, 
the evolution of the maximum acceleration as a 
function of the shear modulus have shown that for a 
given range of values of the shear modulus, an im-
portant increase in the maximum acceleration was 
obtained. For this range of values of G, the predomi-
nant frequency band of the soil 'column' corresponds 

to the predominant frequency band of the seismic 
loading, which leads to the so-called resonance phe-
nomenon.  

The MCS methodology has shown that for the 
Nice accelerogram used in this paper, smaller mean 
values of Amax at the top of the soil column were ob-
tained when a non-resonant mean value of the shear 
modulus G was used (i.e. 

1
72G MPaµ = ) as com-

pared to those obtained when a resonant mean value 
of the shear modulus G was utilized (i.e. 

2
288G MPaµ = ). On the other hand, the variability 

of Amax is maximal for the very large values of the 
autocorrelation distance. This variability decreases 
when the vertical autocorrelation distance ay de-
creases. As for the results obtained from the SPCE 
methodology, the statistical moments of Amax at the 
top of the soil column are close to those resulting 
from the MCS methodology, but the obtained PDFs 
can not be considered as rigorous because relatively 
small values of Q2 were obtained. As a conclusion, 
more advanced probabilistic methods are needed in 
the presence of seismic loading where highly non-
linear models are involved.  
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Appendix A 
The purpose of this Appendix is to check if the 

possible reason for which relatively small values of 
Q2 were obtained (when the SPCE methodology was 
applied) is linked to the chosen system response (i.e. 
Amax). Notice that the test was performed when 

1
72G MPaµ =  and ay=2m. 

The test consists in constructing the SPCE not 
only for Amax at the top of the soil column but for all 
the accelerations at the top of the soil column at the 
different time steps (the value of Amax can be de-
duced from the different SPCEs constructed at the 
different time steps). This test allows one to detect if 
the fact of considering directly Amax as a system re-
sponse is the reason for which the relatively small 
values of Q2 were obtained.  

Notice that a seismic loading of total duration 
T=15s and time step ∆t=0.05s was considered in the 
analysis. Thus, it is composed of 301 registration 
points (or acceleration values). The construction of 
the SPCE 301 times is a difficult task. Blatman and 
Sudret (2011) have suggested an efficient and fast 
alternative approach. To obtain the SPCEs for all the 
accelerations at the different time steps, Blatman and 
Sudret (2011) have proposed the use of the so-called 
principal component analysis (PCA). The aim is to 
capture the main stochastic feature of the response 
using a small number of (non physical) variables 
compared to the original number of variables (i.e. 
301 in the present analysis). This enormously reduc-
es the computational cost since the SPCEs are no 
longer evaluated for all the accelerations at the dif-
ferent time steps, but on a small number of non 
physical variables. The SPCEs computed for the 
non-physical variables are then used to deduce the 
SPCEs for all the accelerations at the different time 
steps. The principal component analysis (PCA) was 
detailed in Blatman and Sudret (2011) and was not 
presented herein. 
 

In this section, one presents the numerical results 
obtained using the PCA which was previously pre-
sented. For the 301 registration points, only five 
SPCEs were found necessary to estimate the SPCEs 
of the 301 registration points. Notice that the values 
of Q2 obtained for the five most influent eigenmodes 
(when using the 500 MC simulations) were respec-
tively 0.65, 0.6, 0.2, 0.2 and 0.2. 

Table A.1 presents the first two statistical mo-
ments as obtained from the direct determination of 
the SPCEs at three different arbitrary times (t1=2.5s, 
t2=5s and t3=10s). In the same table, one also 
presents the first two statistical moments as obtained 
from the SPCEs deduced after performing a PCA on 
the output matrix Γ. This table shows that the pre-
sented results using the PCA are in good agreement 
with those obtained form the direct determination of 
the SPCE at the three chosen times. Even though sa-
tisfactory results for the first two statistical moments 
were obtained, unsatisfactory values of Q2 were ob-
tained when using either the PCA or the direct de-
termination of the SPCE. Thus, for such types of 
problems, one needs to find more advanced stochas-
tic models in order to obtain more rigorous meta-
models for the highly non-linear problems. 

 
Table A.1. Values of the first two statistical moments and the 
coefficient of determination Q2 

 
 
 
 
 
  

 
 

 
 
 
 
 
 

 

 Direct determination 
of the SPCEs 

Determination 
of the SPCEs 
using the PCA

 Aµ
(m/s2)

Aσ
(m/s2) Q2 Aµ  

(m/s2) 
Aσ

(m/s2)
t1=2.5s 0 0.80 0.66 -0.05 0.71 
t2=5s -1.58 3.33 0.81 -1.52 3.82 
t3=10s 0.9 2.67 0.69 0.87 2.90 


